CHAPTER 1

Measurements and SI units

Objectives

At the end of chapter 1, you must be able to:

- Discuss quantities and their SI units
- Discuss prefixes for SI units
- Describe standard notation
- Convert one unit to another
- Take scale reading of various measuring instruments

1.1 Units of measurements

In Book 1 we covered the SI units of basic quantities and derived quantities. All measurements are represented using the international system of units, **Standard International Unit (SI Unit). Table 1.1** shows the summary of SI units of measurements of the quantities:

Table 1.1 Quantities and their SI units

Quantity	Name of SI base	Symbol for SI base
	unit	unit
Length	Metre	m
Mass	Kilogram	Kg
Area	Square metre or	m^2
	metre squared	
Time	Second	S
Volume	Cubic metre or metre	m^3
	cubed	
Current	Ampere	A
Voltage	Volt	V
Resistance	Ohm	Ω
Temperature	Kelvin	K
Angle	Degree	0
Pressure	Pascal	Pa
Density	Kilogram per cubic	Kg/m ³
	meter	

Speed	Metres per second	m/s
Velocity	Metres per second	m/s
Acceleration	Metres per second	m/s/s or m/s ²
	per second	
Force	Newton	N
Work	Newton metre or	Nm or J
	Joule	
power	Watt	J/s or W
Period	Second	S
Frequency	Hertz	Hz

Exercise 1.1

In your groups, answer the following questions:

1. State the SI unit for:

a. length **b.** time **c.** mass **d.** power

2. List three

a. derived quantities **b.** basic quantities **c.** basic SI units **d.** derived SI units

1.2 Prefixes for use with SI units

Some numbers are bigger or smaller. These numbers are shortened by an extra symbol called a **prefix. Table 1.2** below shows the prefixes for SI units.

Table 1.2 prefixes for SI units

Prefix	Symbol	Meaning	Example
Tera	T	1000 000 000 000 (1x10 ¹²)	Terabyte (TB)
Giga	G	1000 000 000 (1x10 ⁹)	Gigabyte ((GB)
Mega	M	1000 000 (1x10 ⁶)	Megawatt (MW)
kilo	k	$1000 (1x10^3)$	kilometre (km)
deci	d	1/10 (1x10 ⁻¹)	decimetre (dm)
centi	С	1/100 (1x10 ⁻²)	centimetre (cm)
milli	m	1/1000 (1x10 ⁻³)	millimetre (mm)
micro	μ	1/1000 000 (1x10 ⁻⁶)	microsecond (ms)
nano	n	1/1000 000 000 (1x10 ⁻⁹)	nanosecond (ns)

1.3 Standard notation

In Table 1.2, the numbers have been expressed in powers of 10.

For example: 1 Megawatt = $1000\ 000\ \text{watt} = 1 \times 10^6$. Numbers written using powers of 10 are said to be in **standard notation** or **scientific notation** or **standard form. Table 1.3** shows examples of some standard notation.

Table 1.3 standard notation

Number	Standard notation
1000 000 000 000	$1x10^{12}$
1000 000 000	1x10 ⁹
1000 000	$1x10^6$
1/10	1x10 ⁻¹
1/100	1x10 ⁻²
1/1000	1x10 ⁻³

Exercise 1.2

In your groups,

1. Write the following in standard notation:

a. 1000 000 000 000 000 w **b.** 10 000 000 000 g

c. 1/1000 000 000 000 s **d.** 0.000 0001 m

2. Convert the following to watts (w)

a. 20 Kw **b.** 4 Mw **c.** 1000μw

1.4 Scale reading of measuring instruments

Measurement of length

The SI base unit of length is the **metre** (symbol m). Other units of lengths are as shown below:

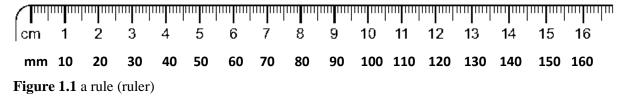
1 kilometre (km) = 1000 m = $1 \times 10^{3} \text{m}$

1 centimetre (cm) = $\frac{1}{100}$ m = 1×10^{-2} m

Instruments for measuring length

Rule (ruler)

A metre rule is used to measure the lengths of distances between 1mm and 1metre.



The scale on the rule is found by checking the number of divisions between two values. On this ruler there are 10 divisions between 0 cm and 1 cm. The scale is found as:

Scale =
$$\frac{1 \text{cm}}{10}$$

Therefore, the scale is 0.1 cm.

Or we can use 10 divisions from 0 mm to 10 mm,

Scale =
$$\underline{10}$$
 mm $\underline{10}$

Therefore, the scale is 1 mm.

Vernier calipers

Vernier calipers are used when smaller and accurate measurements are required. Vernier calipers consist of two parts:

- **a.** The main scale which is fixed. It is usually numbered in cm.
- **b.** The Vernier scale, the part that slides along the main scale. It has 10 divisions, each 0.9 (9/10) mm. The scale gives readings to 0.1 mm or 0.01 cm.

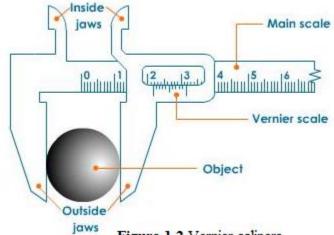


Figure 1.2 Vernier calipers

How to use the Vernier calipers

The object whose length is required is placed between the jaws. Close the jaws onto the object to be measured. Read the main scale, e.g. 1.4 cm. Identify the mark on the Vernier scale which coincides exactly with a mark on the main scale, e.g. 0.3 mm or 0.03 cm. Take this reading to give a second decimal place. The reading will be found as 1.4 cm + 0.03 cm = 1.43 cm.

Micrometer screw gauge

The micrometer screw gauge, shown in **Figure 1.3**, is used to measure accurately the dimensions of all small objects.

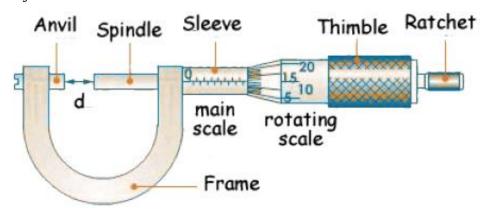


Figure 1.3 micrometer screw gauge

How to use micrometer screw gauge

Rotate the thimble until the wire is firmly held between the anvil and the spindle.

To take a reading, first look at the main scale. This has a linear scale reading on it. The long lines are every millimetre and the shorter ones denote half a millimetre in between. The scale on the

linear scale is 0.5 mm or 0.05 cm. The rotating scale is 0.01 mm or 0.001 cm. Then look at the rotating scale. Add the 2 numbers, on the scale on the right.

From Figure 1.3:

Sleeve reads = 8 mm or 0.8 cm

Thimble reads = 0.12 mm or 0.012 cm

Total reading = 8.12 mm or 0.812 cm

Measurement of mass

The Mass of a substance is the quantity of matter contained in the substance. The SI base unit for mass is the kilogram (kg).

Other units of mass are as shown below:

1 tonne (t) =
$$1000 \text{kg}$$
 = $1 \text{x} 10^3 \text{kg}$

1 gram (g) =
$$\frac{1}{1000}$$
 kg = 1×10^{-3} kg

1 milligram (mg) =
$$\frac{1}{1000000}$$
 kg = 1×10^{-6} kg

Mass is measured by the instruments shown below:

Top pan balance

Triple beam balance

Figure 1.4 instruments for measuring mass

Measurement of time

The SI base unit of time is the second (s).

Other units of time are as follows:

1 millisecond (ms) =
$$\frac{1}{1000}$$
 s = 1×10^{-3} s

1 microsecond (
$$\mu$$
m) = $\frac{1}{1000\ 000}$ s =1x10⁻⁶s

1 nanosecond (ns) =
$$\frac{1}{10000000}$$
 s = 1×10^{-9} s

Time is measured by clocks and watches.

The time intervals are found by using a stop watch.

Experiment 1.1

AIM: To measure time intervals using a stop watch.

MATERIALS: Stop watch, meter rule, 50g mass, clamp stand, clamp and a string.

PROCEDURE:

1. Set up the apparatus as shown in **Figure 1.5** below.

Figure 1.5

- 2. Pull the mass to one side at an angle of about 10^{0} and leave it to vibrate freely.
- **3.** Start the stop watch after one or two oscillations.
- **4.** Read and record the time taken to make 10 complete oscillations.
- 5. Repeat the experiment using lengths 30 cm, 20 cm and 10 cm.

Compare your results with your friends'.

Exercise 1.3

In your groups, answer the following questions:

- **1.** State the situation where you need the following instruments:
 - **a.** Vernier calipers
- **b.** micrometer screw gauge
- **2.** Explain how the following instruments work
 - **a.** Vernier calipers
- **b.** micrometer screw gauge
- **3.** Liz wants to find the thickness of her smallest finger. Explain how best she can do it.
- **4.** Kelson wants to find the speed of an athlete. Complete the table below for the instruments he should use and the quantities he will measure.

Instrument	Quantity

Measurement of volume

Volume is the quantity of space an object occupies. The SI base unit for Volume is metre cubed (m³)

Volume can also be measured using the centimetre cubed (cm³)

$$1cm^3 = \underbrace{1}_{1000\ 000} m^3 = 10^{-6}m^3$$

$$1000\ 000 \text{cm}^3 = 1\text{m}^3$$

Volumes of regular solids

For a regular block, volume = **length x width x height**

For a cylinder, volume = base area x height = $\pi r^2 h$

For a sphere = $4/3\pi r^3$

Volumes of an irregular solid

Volume = the volume of a displaced liquid in a measuring cylinder

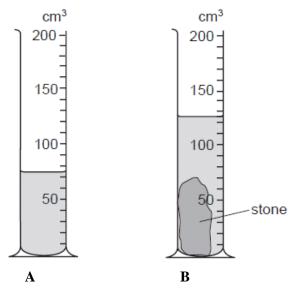


Figure 1.6 measuring a cylinder used to measure the volume of an irregular solid

Volume of an irregular solid = volume B - volume A

 $= 125 \text{cm}^3 - 75 \text{cm}^3$

Volume of an irregular solid = 50cm^3

Experiment 1.2

AIM: To measure volume using a measuring cylinder

MATERIALS: water, measuring cylinder, thin string and 3 stones of different sizes **PROCEDURE:**

- 1. Pour water in the measuring cylinder about half-full.
- 2. Read and record the volume of water as VA.
- **3.** Insert a stone tied to a thin string in the water.
- **4.** Read and record the new volume of water as VB.
- **5.** Calculate the volume of the stone by using the formula, V = VB VA.
- **6.** Repeat the experiment with the other two stones.

Volume of a liquid

The volume of a liquid is measured in litres.

Other units of volume of a liquid are as follows:

1 litre = 1000 cm^3 $1 \text{dm}^3 = 1000 \text{ cm}^3$ $1l = 1 \text{dm}^3$ 1l = 1000 ml $1 \text{cm}^3 = 1 \text{ ml}$

Volume of a liquid is found by pouring the liquid in a measuring cylinder.

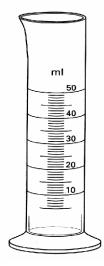
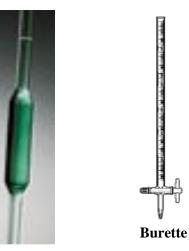


Figure 1.7 measuring cylinder

Other instruments that can be used to measure volume of a liquid are:

Pipette: for getting fixed pre-determined volumes. **Burette:** delivers any volume up to its total capacity.



Pipette

Figure 1.8 volumetric glassware

Exercise 1.4

In your groups, answer the following questions:

- **1.** Write the following in litres:
 - **a.** 10 cm^3
- **b.** 10 m^3
- **c.** 100 m*l*
- **2.** A cuboid has measurements 12 cm by 10 cm by 10 cm. Calculate its volume in:
 - $\mathbf{a.} \text{ cm}^3$
- **b.** m³
- **c.** *l*

Summary

The SI units of the quantities are shown in the table below:

Quantity	Name of SI base	Symbol for SI base
	unit	unit
Length	Metre	m
Mass	Kilogram	Kg
Area	Square metre or	m^2

	metre squared	
Time	Second	S
Volume	Cubic metre or metre	m^3
	cubed	
Current	Ampere	A
Voltage	Volt	V
Resistance	Ohm	Ω
Temperature	Kelvin	K
Angle	Degree	0
Pressure	Pascal	Pa
Density	Kilogram per cubic	Kg/m ³
	meter	
Speed	Metres per second	m/s
Velocity	Metres per second	m/s
Acceleration	Metres per second	m/s/s or m/s ²
	per second	
Force	Newton	N
Work	Newton metre or	Nm or J
	Joule	
power	Watt	J/s or W
Period	Second	S
Frequency	Hertz	Hz

Prefixes are used in larger and smaller quantities as shown in the table below.

Prefix	Symbol	Meaning	Example
Tera	T	1000 000 000 000 (1x10 ¹²)	Terabyte (TB)
Giga	G	1000 000 000 (1x10 ⁹)	Gigabyte ((GB)
Mega	M	$1000\ 000\ (1x10^6)$	Megawatt (MW)
kilo	k	$1000 (1x10^3)$	kilometre (km)
deci	d	1/10 (1x10 ⁻¹)	decimetre (dm)
centi	С	1/100 (1x10 ⁻²)	centimetre (cm)
milli	m	1/1000 (1x10 ⁻³)	millimetre (mm)
micro	μ	1/1000 000 (1x10 ⁻⁶)	microsecond (μs)
nano	n	1/1000 000 000 (1x10 ⁻⁹)	nanosecond (ns)

The numbers that are written using powers of 10 are in scientific notation or standard form. Length is measured in metres by a rule (ruler). Length of several metres can be measured by using a tape measure. Length or thickness of small objects can be measured by using a micrometer and Vernier calipers

Mass is measured in kilograms by using a top pan balance and triple beam balance.

Volume of a regular solid is measured in cubic metres by using the formulae, v = 1 x w x h. Volume of an irregular solid is measured by using the volume of the displaced water in a measuring cylinder.

Volume of a liquid is measured by pouring water in the measuring cylinder.

f. 0.00000089 s

Stu	de	nt ass	sessn	nent								
1.	a. b.	rite down 1040 cm 700 g in 30000 μ	n in m kg	ue of								
2.	Th	e units of	measur	rements a	are giv	en as fo	llows:					
	m	g	S	mm	ns	cg	cm^3	ms	μm	ml	kg	km
		ii. Unitiii. Unitiv. Unitv. UnitWhich of	s of mass of volus of times of dense of the aborate? opwatcheasuring ernier ca	ss? ume? e? gth? sity? ove are ne? g cylinde		ed by						
3.	a.b.c.		000 000 l 82 m	U	ndard f	orm:						

4. A wooden block measures 10 m x 10 m x 8 m. Calculate its volume.

- 5. A cylindrical can has a height of 10 m and area 40 cm². What is the radius of the can?
- **6.** The volume of the water in the measuring cylinder is 40 cm³. A stone is lowered in the cylinder and its volume rose to 100 cm³. Calculate the volume of a stone in
 - \mathbf{a} . cm³
- $\mathbf{b} \cdot \mathbf{m}^3$
- 7. Write down the Vernier reading in **Figure 1.9**:

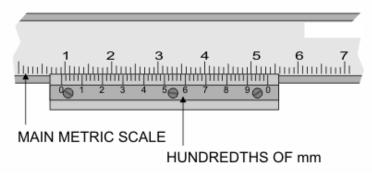


Figure 1.9

8. What is the reading on the micrometer screw gauge?

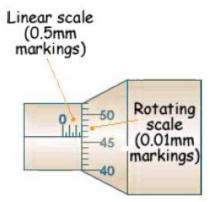


Figure 1.10

- **9.** Explain how you can find the volume of
 - a. A cube
 - **b.** A stone
- **10.** Name the instrument you would use for the following measurements:
 - **a.** Thickness of a coin
 - **b.** Length of a building
 - **c.** Time intervals
 - **d.** Time of the day

- e. Your height
- **f.** Length of your exercise book

g.

11. Write down the volume of a solid in Figure 1.11.

12.

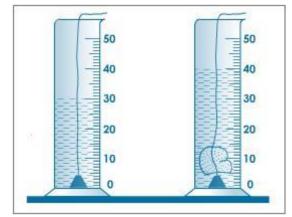


Figure 1.11

CHAPTER 2

Scientific investigations

Objectives

At the end of chapter 2, you must be able to:

- Design a scientific investigation
- Carry out a scientific investigation
- Analyse data from a scientific investigation
- Communicate results from experiments
- Evaluate a scientific investigation

2.1 Designing a scientific investigation

Designing a scientific investigation involves the following stages:

- Identifying a problem
- Hypothesising
- Deciding the type of data to collect
- Identifying variables

Identifying a problem

In an investigation, start with the problem that you want to investigate. This is like a question that you need answers for. For example: what is the effect of voltage on current in the circuit?

Hypothesising

This is the stage where you make a prediction. The prediction is called **hypothesis**. For example: **current in the circuit increases when voltage increases**. The hypothesis may not be right. Therefore, this prediction is tested during an investigation.

Deciding the type of data to collect

The data to be collected during an investigation must be decided before carrying out the investigation. **For example,**

- Decide the range of voltage readings to be collected
- Decide the range of current values to be collected

Identifying variables

In this case we identify what is going to be observed or measured. These are called **variables**. **Variables** can be defined as factors that would affect the results of the investigation. Variables can be anything that can change. Variables are mainly taken from the hypothesis. Variables in this investigation are number of cells, voltage and current.

Independent variable: The variable that you are changing in an investigation or experiment.

This variable affects what happens in an investigation. In this investigation the independent variable is number of cells. Changing the number of cells will change the amount of voltage and current in the investigation.

Dependent variable: This is what you will be measuring. For example: voltage and current.

Control variables

During an investigation, some variables do not have to be measured. These variables need to be controlled. **For example:** temperature and the value of resistor.

Exercise 2.1

In your groups, discuss how you can design a scientific investigation on how the frequency of a pendulum depends on the length of the string.

2.2 Carrying out a scientific investigation

Experiment 2.1

AIM: To investigate the effect of voltage on current

MATERIALS: Connecting wires, ammeter, voltmeter, 4 cells, switch and resistor **PROCEDURE:**

1. Set up the experiment as shown in **Figure 2.1**.

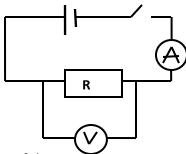


Figure 2.1

- 2. Close the switch and take the voltmeter and ammeter readings.
- **3.** Repeat the experiment with 2, 3 and 4 cells.
- **4.** For each number of cells, take the voltmeter and ammeter readings.
- **5.** Record the results in **table 2.1** below:

Number of cells	Voltmeter reading (V)	Ammeter reading (A)
1		
2		
3		
4		

Table 2.1

6. Discuss your results with other students in your class.

RESULT

The voltmeter and ammeter readings increase when the number of cells increases.

EXPLANATION

The voltage increases because the force pushing electrons in the circuit increases. This causes an increase in the amount of current in the circuit.

CONCLUSION

Therefore, an increase in voltage causes an increase in current.

Controlling variables

In experiment 2.1, temperature and the resistor are the variables that are controlled.

To get a fair result, you should change one variable (e.g. number of cells) at a time and check how it affects other variables (e.g. voltage and current).

Collecting scientific data

Make sure you have written the observations properly. State the unit in which each measurement is made, for example 0.1 A for current.

You can use a table. Make sure you enter the observations in the table and indicate the units at the top of each column only. In a table draw rows and columns. Rows are horizontal gaps while columns are vertical gaps. Place **independent variables** (this is what you are changing in the experiment) in the first column. Place the **dependent variables** (this is what you will be measuring) in the next column (s).

Table 2.2 below shows the results for an experiment like **experiment 2.1**.

le Depe	endent variables
Voltage (V)	Ammeter (A)
1.5	0.1
3	0.2
4.5	0.3
6	0.4
	Voltage (V) 1.5 3

Table 2.2

No measurement is exact. There is always some uncertainty about it. For example, if the values are like in **Table 2.3**, it is very important to give your calculations to an approximate number of significant figures.

Voltage (V)	Current (A)	Resistance (Ω) = $\frac{\text{Voltage (V)}}{\text{Current (A)}}$
1.0	0.15	6.66666667
3.0	0.48	6.25
5.0	0.81	6.17283906

Table 2.3

In this case the measurements of voltage and current are given to 2 significant figures. Therefore, the calculations for resistance should also be rounded off to 2 significant figures.

Voltage (V)	Current (A)	Resistance (Ω) = $\frac{\text{Voltage (V)}}{\text{Current (A)}}$
1.0	0.15	6.7
3.0	0.48	6.3
5.0	0.81	6.2

Table 2.4

2.3 Analysing data from a scientific investigation

Errors and accuracy during experiments

The results of an experiment can be slightly inaccurate for two main reasons:

- 1. You can make personal errors in the observations.
- **2.** The apparatus itself can be capable of only limited accuracy.

The errors can be grouped into:

1. Personal errors

The common personal error is due to parallax. **Parallax error** is the apparent change in the position of an object due to a change in the position of your eyes and every time you measure a length or read a pointer moving over a scale it is likely to arise.

Figure 2.2 shows how the position to be read varies, with respect to the scale, as the eye is moving from P1 to C to P2.

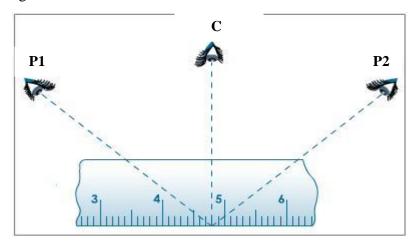


Figure 2.2 Taking a reading from a ruler

When reading a liquid level, you take the reading from the meniscus. The meniscus should always be viewed horizontally to avoid parallax as shown in **Figure 2.3**.

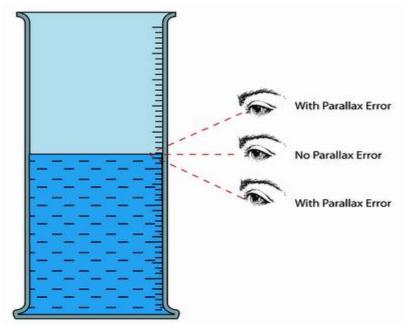


Figure 2.3 Taking the reading from the meniscus

2. Errors of the instrument

If you are using an apparatus which is not sufficiently sensitive, it is difficult to produce a good experimental result. For example, it is difficult to time a race using a watch with no second hand. So you will be unable to produce a good experimental result with apparatus which is not sufficiently sensitive. Another example can be a measuring cylinder. Consider the determination of the volume of a solid by displacement of water in a measuring cylinder. In a 100 cm³ cylinder every cm³ is marked, but the graduations on a 500 cm³ vessel are only every 5 cm³. In this case, the smallest cylinder into which the solid will go should be used because a more accurate reading is possible.

Zero error: The error which occurs when the measuring instrument does not indicate zero when it should.

3. Reading and recording

Estimation of reading to one-tenth of the smallest scale division is often necessary and should be practiced. Always imagine the division divided up into ten equal parts and estimate which tenth coincides with the mark to be read.

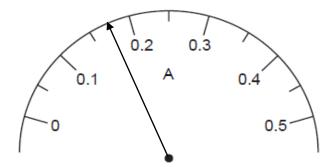


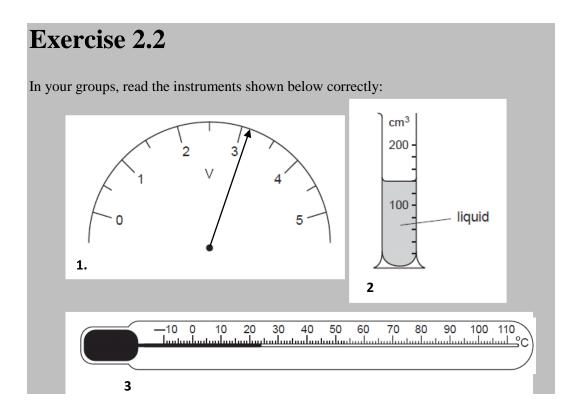
Figure 24 reading scale

The reading on an ammeter is 0.155 A.

Minimisation of errors

You can produce accurate results from an experiment by reducing the errors. Errors can be reduced by:

- Taking an average of several readings. Therefore, you repeat the experiment.
- Avoiding parallax error. Therefore, if you are reading from a scale, make sure you look at right angles to it so that you read a correct number.
- Avoiding the zero error. Therefore, make sure that the instrument is pointing at zero before it is used in the experiment.

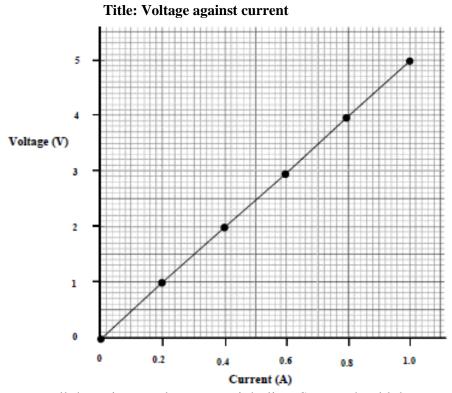


Plotting the graph

The results can be plotted on the graph.

The following are the hints on drawing graphs:

- Choose your scale so that the graph fills the paper, and label the axes.
- Mark each point by a dot or with a cross.
- Join only those points that are on the same lines in the straight line graph.
- Use a ruler to draw an obviously straight line graph, putting the line in such a way that the points are evenly distributed about it.
- Write the title of the graph.



During an experiment, not all the points can be on a straight line. So you should draw a straight line on a graph that goes through as many points as possible. This is called **a line of best fit**.

Title: Voltage against current

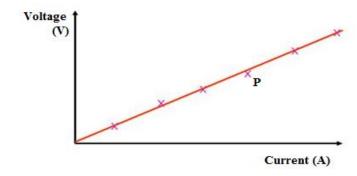


Figure 2.7 line of best fit

If a point is lying outside the range of the straight line, it is treated as an error and do not include it when drawing the straight line. For example: point \mathbf{P} .

If points are scattered, you can draw the graph of the best fit which is an average of all the points as shown in **Figure 2.8.**

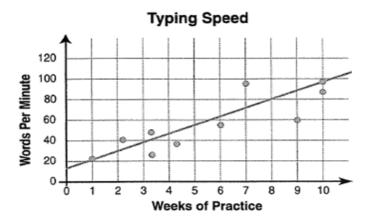


Figure 2.8 graph of best fit

Conclusion from the graph

Give a clear conclusion in simple and straight forward sentences. Be honest when writing the account and conclusion.

From the graph in **Figure 2.6**, you can draw the conclusion depending on the shape of the graph. We can observe that the current in the circuit increases with an increase in voltage or we can say that the current in the circuit decreases with a decrease in voltage. When voltage is doubled current is also doubled. This is only true when temperature and other physical factors are kept constant. Therefore, voltage and current are in **direct proportion.**

2.4 Communicating results from experiments

You can communicate your results from an experiment by including the following points:

- Organizing results from the experiment
- Making oral and poster presentation of the findings
- Sketching and labeling experimental set up
- Writing laboratory report.

Laboratory report

Aim

The aim of this investigation was to determine the relationship between the length of nichrome wire and its resistance.

I knew that I can find the resistance of the nichrome wire by finding the voltage and current across the nichrome wire. Then I can work out the resistance by using a formula shown below:

Resistance (R) =
$$\frac{Voltage(V)}{Current(A)}$$

In this case I would connect a nichrome wire in a circuit then measure voltage across it and current in the circuit. I would do this for different lengths of nichrome wire.

Hypothesis

Length being one of the factors that affect resistance of a wire, it means when the length of the wire is changing its resistance will also change. My prediction was that the resistance of the wire will increase when the length of the wire increases and vice versa.

Variables

The key variables in this experiment were:

- Length of nichrome wire: measured by a metre rule in centimetres (cm).
- Voltage: measured by a voltmeter in volts (V)
- Current: measured by an ammeter in amperes (A).

The variables that I controlled were:

- Temperature: this was controlled by connecting the nichrome wire in a beaker of cold water.

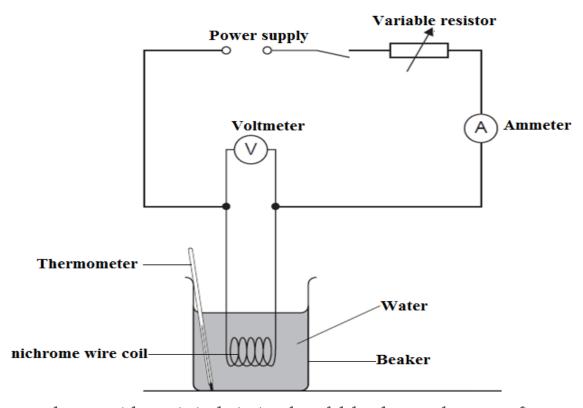
 Temperature must be controlled because when current flows through a nichrome wire it produces heat and this heat affects the resistance of the wire.
- Diameter (thickness) of nichrome wire: this was controlled by using the wire of the same thickness. So
 in my investigation I was using the same wire and simply changing its length. Thickness of the wire
 must be controlled because it affects the resistance of the wire.

Materials

The materials that I used during this investigation were: 100 cm nichrome wire (0.28 mm diameter), ammeter (0-3A), voltmeter (0-6V), metre rule, connecting wires, crocodile clips, cold water, beaker, cells (battery) and a variable resistor.

Procedure

I set up the experiment as shown below:



I connected a 100 cm nichrome wire in the circuit and recorded the voltmeter and ammeter readings.

I repeated the experiment with 80 cm, 60 cm, 40 cm and 20 cm nichrome wires. For each length, I recorded the voltmeter and ammeter readings.

I recorded the results in the table as shown below:

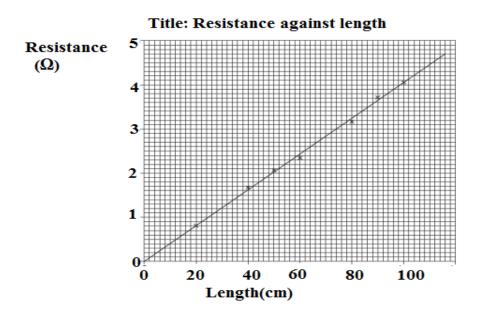
Length of the wire (cm)	Current (A)	Voltage (V)	Resistance(Ω) = $\frac{voltage(V)}{current(A)}$
100	1.0	4.2	4.1
80	1.3	4.2	3.2
60	1.8	4.2	2.4
40	2.5	4.2	1.7
20	4.7	4.2	0.9

Safety: When I was carrying out this experiment, I made sure that the power supply was switched off before I removed the nichrome wire to change its length.

I used my results to calculate the resistance of each length of the wire.

Drawing the graph

I used the values in the table to plot a graph of resistance against length with on the horizontal axis because it is the independent variable and resistance on the vertical axis because it is a dependent variable.



The points on my graph are a little bit scattered but I have used a line of best fit which is a straight line.

Conclusion

From my prediction I expected the graph of resistance against length to be a straight line, which showed that the resistance of the nichrome wire increases as the length of the wire increases.

Therefore, I can conclude that resistance of the wire is directly proportional to its length. This agrees with my original hypothesis that doubling the length of nichrome wire also doubles its resistance and vice versa.

Evaluation

The points on my graph are uneven but I am sure they would lie on a straight line. There are reasons why my points may have been scattered. Some of the reasons are:

- Personal error due to parallax
- Scale on the instruments

To get more accurate results I would have done the following:

- Repeated the experiment to get average results that are accurate
- Avoid parallax error make sure I look at a right angle to the scale of the instrument so that I read a
 correct value

• Avoid the zero error- make sure that the instrument is pointing at zero before it is used in the experiment.

Exercise 2.3

In your groups, prepare a presentation of the results you obtained in **experiment 2.1.**

2.5 Evaluating a scientific investigations

An evaluation helps to decide how reliable your conclusions are. It also helps how the experiment could be improved. In examinations, you may be asked to comment on how precise or reliable the evidence is. You may also be asked how to improve that accuracy or reliability.

Reliability

You must comment about uncertainties in your measurements. This can be the reliability of the readings, especially in relation to the scale of the measuring apparatus.

In an experiment, you will find some results which do not agree with the others. These results look like mistakes and we call them **anomalous results.**

The reliable results must be the results that if the measurements are repeated, the same result should be obtained. On a best fit line, the reliability of the results can be checked by checking the closeness of the points to the line. When most of the points are very close to the best fit line, we say the results are reliable.

Ways of reducing factors that may affect a scientific investigation

After completing the experiment, you must suggest ways of improving it. This is important in order to have more reliable conclusion.

1. Precision

To be **precise** means that the measurements were done as accurately as possible.

For example

If you are carrying out an experiment to measure very small quantities, e.g. voltage, you may use a millivoltmeter instead of a voltmeter in order for the results to be more precise.

If you are measuring time intervals, e.g. time taken for one oscillation of a pendulum to be performed, it is very important to record the time for 10 oscillations. Divide the total time for 10 oscillations by 10. In this case, the errors by the human reaction time are minimized because they are spread out over many oscillations.

2. Reliability

Reliability of the results can be improved by repeating the experiment and compare the results. The results are close to each other, and then the results are reliable.

Exercise 2.4

In your groups, use the results in **experiment 2.1** to:

- 1. Decide how far the results support the hypothesis.
- **2.** Decide if your results were reliable.
- **3.** Discuss shortcomings that may affect the results.
- **4.** Discuss ways of reducing factors that may affect the results of the experiment.

Summary

Designing of a scientific investigation involves identifying a problem, hypothesising, deciding the type of data to collect and identifying variables.

When carrying out a scientific investigation some variables must be controlled and just change one variable in order to have a fair test. Then collect and organize the scientific data e.g. in a table.

In an experiment, the results can have some errors because of personal errors, instrumental errors and recording errors.

These errors can be minimised by repeating the experiment, avoiding parallax errors and avoiding zero error.

When drawing a graph, you must choose axes, choose scales, label the axes and draw the best line.

Conclusion is made from the trend of the graph.

Evaluation is used to help you decide how reliable your conclusions are and how your experiment could be improved or extended.

Student assessment

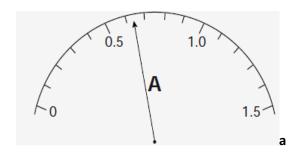
- **1.** Define the following terms:
 - a. Parallax error
 - **b.** Zero error
- **2.** What instructions would you give to enable accurate measurements to be made from a measuring cylinder?
- **3.** List down **three** hints on drawing graphs.
- **4.** During a physics practical, a student took the reading of a voltmeter. The reading was 0.52V. The required reading was 0.51V. What was the experimental error?
- **5.** Frequency of an oscillating cantilever (ruler) is affected by its length. **Table 2.5** below shows the results obtained during an investigation.

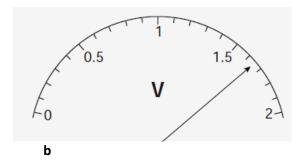
Table 2.5

Length of a cantilever (cm)	10	20	30	40	50
Frequency (Hz)	1.8	1.6	1.4	1.2	1

- **a.** Use the results in **Table 2.5** to draw a graph of frequency (y axis) against length of a cantilever (x axis).
- **b.** How can you verify that the results during the investigation were correct?
- **c.** What is the relationship between the length of the cantilever and the frequency?
- **6.** Explain what is involved in:
 - **a.** hypothesising
 - **b.** controlling variables
 - c. conclusion
 - d. evaluation
- 7. What is the importance of controlling variables during a scientific investigation?
- **8.** In a scientific investigation,
 - a. Discuss three classifications of errors.
 - **b.** Discuss ways of minimising the errors mentioned in **8(a)**.
- **9.** Discuss what must be included in a written report of the investigation.

10. Write down the readings on the following instruments:





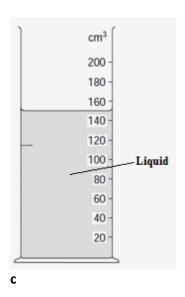


Figure 2.9

- **11.** A form three class at Phunziro Secondary School was investigating the change in temperature of hot water (100 cm³) as cold water was added.
 - **a.** Name the instrument that can be used to measure the temperature of water.
 - **b.** Apart from the instrument in **11** (a), what are the other required apparatus?
 - **c.** The results obtained during the investigation were recorded in the **Table 2.6**:

Table 2.6

Volume of cold water added	Temperature (⁰ C)	
(cm ³)		
0	100.0	
20	78.0	
40	68.0	
60	60.5	
80	54.0	
100	39.0	

d. Use the data in the table to plot a graph of temperature (y-axis) against volume (x axis).

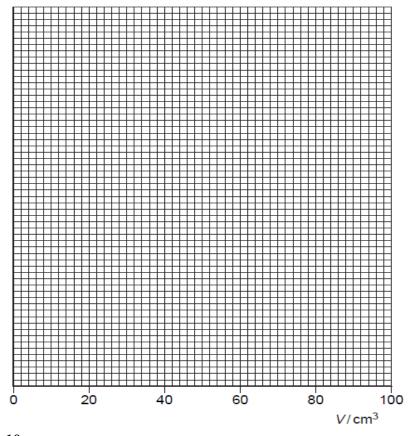


Figure 2.10

- e. What conclusion can you make from this investigation?
- **12.** The results obtained to find the relationship between length of nichrome wire and resistance are shown in **Table 2.7.**

Table 2.7

Length of the wire	Current (A)	Voltage (V)	Resistance(Ω) =
(cm)			voltage(V)
			current(A)
100	0.2	1.2	
80	0.4	1.2	
60	0.6	1.2	
40	0.8	1.2	
20	1.0	1.2	

- a. Calculate the resistance of each length of the wire and complete the table.
- **b.** Theory states that resistance of the wire is directly proportional to its length. State whether your results support this theory. Justify your answer by reference to the results.
- c. State three variables that were kept constant during this investigation.

- **d.** Suggest **one** precaution you could take to ensure that the readings are as accurate as possible.
- **13. Figure 2.11** shows points marked on a graph from the results obtained during an investigation.

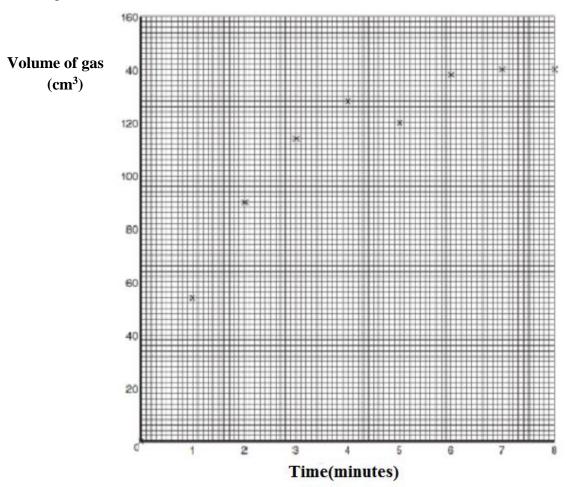


Figure 2.11

- **a.** Draw a smooth curve by joining the points.
- **b.** Which point shows an inaccurate result?
- c. Give a reason to your answer in 13 (b).
- **14.** Evelyn is investigating the effect of surface area exposed to the air on the rate of cooling of hot water. She designed the apparatus as shown in **Figure 2.12**.

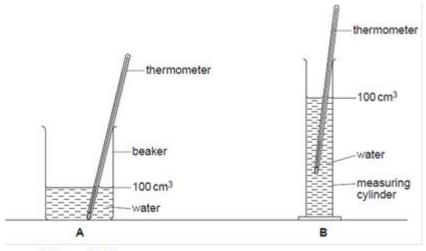
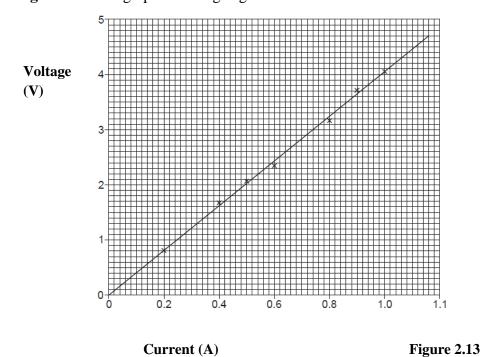


Figure 2.12

- **a.** Name **two** variables that are kept constant.
- **b.** Name **one** variable which is changing.
- **c.** Give **one** hypothesis of the investigation.

15. Figure 2.13 is a graph of voltage against current



a. Explain the use of plotting a line of best fit.

- **b.** What conclusion can you draw from the graph?
- **c.** State the value of
 - i. Current when voltage is 1.5 V
 - ii. Voltage when current is 0.7 A.
- **d.** Suggest shortcomings that might affect the results of a scientific investigation.
- e. Discuss ways of reducing factors that may affect a scientific investigation.

CHAPTER 3

Kinetic theory of matter

Objectives

At the end of chapter 3, you must be able to:

- Describe the kinetic theory of solids, liquids and gases
- Explain the cause of gas pressure
- Explain the relationship between average molecular speed and temperature
- Explain the meaning of absolute temperature

3.1 Three states of matter

What is matter? Matter covers all the substances and materials from which the physical universe is composed. **Matter** is anything which has mass and volume or occupies space. All the substances and materials are categorised as solids, liquids and gases. Therefore, the three states of matter are **solid**, **liquid** and **gas**.

Particle arrangement in the three states of matter

Solids: Solids have very strong intermolecular forces. Their particles are closely packed in a regular pattern. Their particles vibrate within a fixed point when heated.

Liquids: Liquids have weak intermolecular forces compared to solids. Their particles not closely packed and they slide over each other because there are spaces between them.

Gases: Gases have weakest intermolecular forces. Their particles are further apart and move freely because there are larger spaces between them.

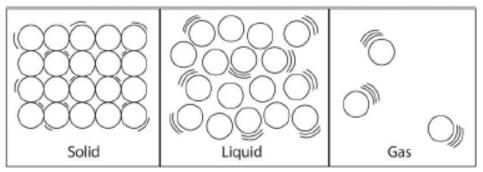


Figure 3.1 arrangement of particles in the three states of matter

3.2 The kinetic theory

Kinetic theory is a scientific explanation of the behaviour of these three states of matter. It is a theory which accounts for the bulk properties of matter in terms of constituent properties.

The main points of the kinetic theory are:

- All matter is composed of smaller particles (molecules, atoms or ions) which have different sizes. These particles are invisible to the naked eye.
- The particles are held together by intermolecular forces (IMFs). **Intermolecular forces** are forces of attraction between particles of a state of matter.

Factors that affect the size of intermolecular force in the given state of matter are:

Distance between particles

An increase in distance **d** between particles decreases the strength of intermolecular forces and vice versa.

Figure 3.2 effect of distance on the size of intermolecular forces

The size of the particles

Increasing the size of the particles increases the strength of intermolecular forces and vice versa.

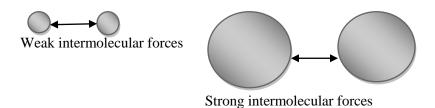


Figure 3.3 effect of size of the particles on intermolecular forces

• Kinetic theory also states that the vibrations of the particles become greater as the temperature rises.

Experiment 3.1

AIM: To investigate the kinetic molecular theory of matter

MATERIALS: Balloon, string, heat source and fridge (freezer)

PROCEDURE:

- **1.** Inflate a balloon.
- 2. Put the balloon in a freezer for some time.
- **3.** What happens to the size of the balloon? Explain in terms of kinetic theory.
- **4.** Remove the balloon and put it near the heat source or under the sun.
- **5.** What happens to the size of the balloon? Explain in terms of kinetic theory.

From **Experiment 3.1**, compare your results with the following results:

- **3:** The balloon contracts because particles lose kinetic energy and move closer to each other.
- 5: The balloon expands because particles gain kinetic energy and move further apart.

CONCLUSION

From the results in **experiment 3.1,** we can conclude that particles in a state of matter are always in motion.

3.3 Properties of matter

Properties of Solids

Solids have the following properties:

- They have a fixed shape because solids are crystalline and atoms in it are set in well defined patterns.
- They have a fixed volume.
- They have high density because their molecules are held closer to each other.
- The volume occupied by particles is less compared to other states.
- They are incompressible because there are no spaces between particles of solids.
- Their particles vibrate about a fixed mean position.
- Their particles' vibration increases as temperature increases and their separation increases slightly.

Properties of Liquids

Liquids have the following properties;

- Their particles are closer to each other but relatively further apart when compared to solids
- They take the shape of a container which holds them because their molecules slide over each other.
- They have a fixed volume.
- They cannot be compressed because the spaces between molecules are very small.
- Molecules in liquids vibrate more and they move at a very high speed throughout the body of the liquid.

Properties of gases

The properties of gases are as follows:

- They do not have a fixed shape because their molecules are far apart and there are a lot of free spaces between them.
- They take the shape of the container.
- They do not have fixed volume because their molecules can easily escape; therefore, they take the volume of the container which holds them.
- They have low density because they occupy a greater space (greater volume).
- They can easily be compressed because there are a lot of spaces between molecules.

 Their molecules move randomly and at quite high speeds at normal temperature and pressure.

Exercise 3.1

In your groups, answer the following questions:

- 1. Draw diagrams to show the arrangement of particles in:
- a. Molten sodium chloride
- **b.** Gaseous water
- c. An ice block
- **2.** Explain, using kinetic theory, the following:
- a. Particles in gaseous lead diffuse faster than particles in molten lead.
- **b.** Particles in solids vibrate within a fixed point.
- c. The balloon containing air expands when heated.

3.4 Gas pressure

Pressure is defined as force exerted per given area. In gases, pressure is caused by the force exerted by gas molecules per given area on the surface of the container.

From **experiment 3.1**, when the balloon was placed near the heat source, it expanded. The pressure inside the balloon is caused by the gas particles striking the walls of the balloon. An increase in temperature causes an increase in kinetic energy of the particles. The particles that have more energy move faster and strike the inside surface of the balloon more frequently. This causes an increase in pressure.

Gas pressure can also increase by increasing the number of molecules of the gas.

When using a pump to inflate a balloon, the number of gas molecules increases. This increase in gas molecules makes the molecules to strike the inside surface of the balloon most frequently in all directions. This causes an increase in pressure. Hence the balloon expands.

3.5 Molecular motion and temperature.

Experiment 3.2

AIM: To determine the melting point of ice and boiling point of water.

MATERIALS: Bunsen burner, matches, ice blocks, tripod stand with wire gauze, thermometer, beaker, stop watch and graph paper.

PROCEDURE:

- 1. Put ice blocks in a beaker. Measure the temperature of ice blocks.
- 2. Light a Bunsen burner and heat the ice blocks.
- **3.** Record the temperature changes every minute until the ice blocks melt and the liquid boils. Record your results in the table.

Time(min)	1	2	3	4	5	6	7	8	9	10
Temperature(⁰ C)										

Table 3.1

4. Plot a graph of temperature (0 C) against time (min). Discuss your observations with your friends in class. Write down the melting point of ice and the boiling point of water.

Figure 3.6 shows a sketch of the graph from experiment 3.2

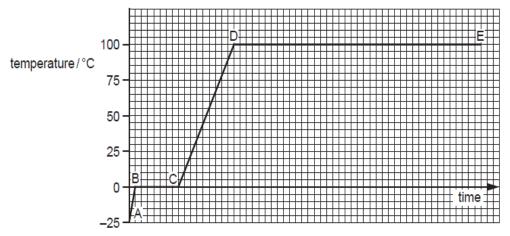


Figure 3.6 the heating graph of matter

The kinetic theory of matter can be used to explain how a substance changes from one state to another.

When a solid is heated, its temperature increases (between A and B). Its particles gain kinetic energy and vibrate more, moving further away from each other. The heat energy supplied between B and C weakens the intermolecular forces. This heat energy is called **latent heat of fusion.** This breaks the regular pattern. The particles now move around each other. Solid forms a

liquid and the process is called **melting.** This takes place at a constant temperature called **melting point.** The temperature remains constant while melting because all the heat energy supplied is used to break down the internal bonds.

When a liquid is heated its temperature starts increasing again (between C and D). Its particles move faster by gaining kinetic energy. The particles that are on the surface have enough energy to overcome the forces between themselves. These particles of the liquid escape to form a gas. The process is called **evaporation**. Further heating makes the particles to escape from the liquid so quickly. The liquid starts **boiling** (between D and E). The temperature is called **boiling point**. This temperature is also constant because the substance gained latent heat called **latent heat of vapourisation** which is used to break down the internal bonds.

Table 3.2 shows the boiling and melting points of some substances

Substance	Melting point (⁰ C)	Boiling point (⁰ C)
Water	0	100
Aluminium	661	2467
Sulphur	113	445
Ethanol	-117	79
Magnesium oxide	2827	3627
Mercury	-30	357
Methane	-182	-164
Oxygen	-218	-183
Sodium hydroxide	801	1413

When a gas is cooled, its temperature decreases. The average kinetic energy of the particles decreases and they move closer to each other. The intermolecular forces increase and this causes the change of gas to liquid. The process is called **condensation.**

When a gas is cooled, its temperature decreases. The average kinetic energy of the particles decreases and they move closer to each other. The intermolecular forces increase and this causes the change of liquid to solid. The process is called **freezing.**

NOTE: During condensation and freezing, heat energy is given out.

Figure 3.7 is a summary of changes of state of matter.

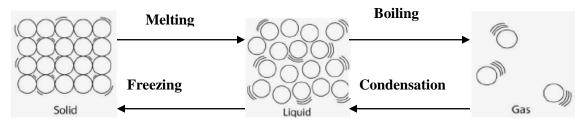


Figure 3.7 changes of states of matter

Motion of gas molecules

Gas molecules move at high speed at random in a container. The movement is known as **Brownian motion.**

When the temperature of the gas increases, the speed of molecules also increases because particles gain kinetic energy. This is shown by the collisions or bombardment of invisible molecules on the visible particles.

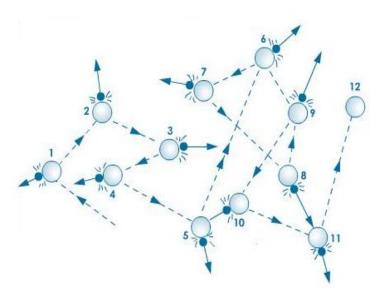


Figure 3.8 Brownian motion of gas molecules.

Diffusion

Diffusion is the movement of molecules (fluid molecules) from a region of high concentration to a region of low concentration. This is the process by which different substances mix as a result of the random motions of their particles.

Diffusion stops when there is even distribution of the fluid.

If you open a bottle of perfume in one corner of a room the scent can be detected throughout the whole room because the scent will move from a region of high concentration (where the bottle is) to a region of low concentration (where there is no perfume).

Demonstrating diffusion

Diffusion of bromine gas and air can be demonstrated as shown in **Figure 3.9**.

Diffusion of gases: Bromine and air

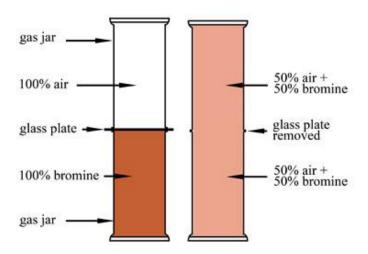


Figure 3.9: diffusion of bromine gas and air

When the glass plate is removed so that the two open ends of the jars are in contact, bromine gas diffuses rapidly into the air.

Diffusion of bromine gas into the air is noticed by the paler brown colour of bromine in air. This takes place until there is uniform paler brown colour in both jars. The air molecules again diffuse into the bromine gas.

NOTE

Diffusion can take place at a high rate if it is carried out at high temperature because high temperature increases the kinetic energy of the particles.

Lighter molecules diffuse faster than heavy molecules.

Diffusion also occurs in liquids but it takes much longer days because molecules in liquids are not very fast as explained in kinetic theory of liquids

It also occurs in solids. But diffusion is not noticeable in solids because it takes many years for a very small layer of the substance to diffuse. This is so because molecules in solids are held close together by strong forces.

Applications of diffusion

Diffusion has the following applications in the body:

- Oxygen diffuses from alveoli (air sacs) into the blood capillaries in the lungs.
- Carbon dioxide diffuses from the blood capillaries to the alveoli in the lungs.
- Digested food diffuses from the small intestines into the blood capillaries of the villi.

Exercise 3.2

In your groups, answer the following questions:

- 1. Explain the cause of gas pressure.
- **2.** With the aid of a diagram, describe the diffusion of copper sulphate in water.
- **3.** Discuss the difference in diffusion in the three states of matter.
- **4.** Explain why a solid melts when heated.
- **5.** Draw and label the graph you would expect to produce if water vapour at 100° C was cooled to a temperature of 0° C.

3.6 Absolute temperature

Absolute temperature is the minimum temperature that any substance can reach when it is cooled. If you put water in the freezer, the temperature of the water decreases and goes beyond 0°C. This substance's temperature will stop decreasing when it reaches -273°C. This temperature is called **absolute zero.** The Lord Kelvin proposed his temperature scale in 1854, called **Kelvin scale**, which has 0 K at absolute zero.

When the temperature of water decreases, the kinetic energy of the particles also decreases. This decreases the volume of water. At absolute zero the particles do not have any motion.

Therefore, we can also define **absolute temperature** as the temperature at which molecules have the minimum possible kinetic energy.

Figure 3.10 is a graph showing the relationship between the volume of a gas and temperature.

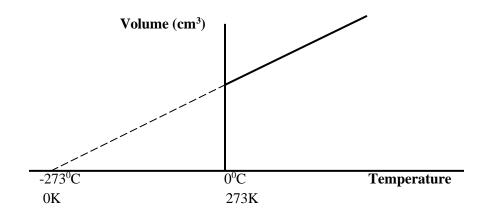


Figure 3.10 Volume of a gas against temperature

Summary

The three states of matter are solid, liquid and gas.

Kinetic theory explains why different states of matter behave differently.

Some properties of the states of matter are shown in **Table 3.3**:

Table 3.3

Solid	Liquid	Gas
Fixed shape	No fixed shape	No fixed shape
Fixed volume	Fixed volume	No fixed volume
Incompressible	Fairly high density	Low density
	Incompressible	Easily compressed

When a substance is heated, its particles gain kinetic energy and move further apart to form a new state of matter. Temperature remains constant when a substance changes its state because the heat energy used is as latent heat.

Absolute temperature is the minimum temperature that a substance can reach when it is cooled or the temperature at which the substance's motion is minimum.

Diffusion is the movement of particles from a region of high concentration to a region of low concentration.

Diffusion is fastest in gases because the spaces between particles are greater and the particles are lighter than in other states of matter.

Student Assessment

- **1.** Define the following scientific terms:
 - **a.** Intermolecular forces
 - **b.** Random motion
 - c. Diffusion.
- 2. State the difference between solids and liquids in terms of intermolecular forces.
- **3.** Draw structures of a solid, liquid and gas to show the arrangement of their molecules.
- **4.** Describe the differences between solids, liquids and gases in terms of the motion of the molecules.
- **5.** Describe an experiment which demonstrates Brownian motion of the smoke particles in the air.
- **6.** State **two** uses of diffusion.
- 7. State **two** differences between the process of evaporation and boiling.
- **8. Figure 3.11** shows a graph of temperature against time for a pure solid substance which is heated until it changes into gas. Use it to answer the questions that follow.

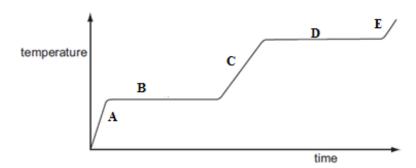


Figure 3.11

- **a.** Which parts of the graph corresponds to the substance existing in two states for each part?
- **b.** Explain how the heat supplied to the substance during B and D is used.
- **c.** What happens to the substance at
 - i. B?
 - ii. D?
- **d.** Which part of the graph shows a substance that has
 - i. Weakest IMF

- ii. Strongest IMF
- iii. Molecules with the greatest kinetic energy
- **9.** Brownian motion of smoke particles in air is an example of diffusion.
 - a. Define 'diffusion'.
 - **b.** State the effect in the rate of diffusion if the temperature increases.
- **10. Figure 3.12** is a diagram showing gases (hydrogen chloride and ammonia) from the solutions diffusing along the tube and a white cloud forming where they meet at point **A**.

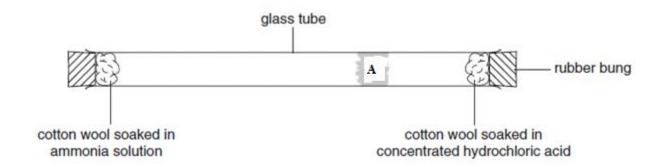


Figure 3.12

- **a.** Which of the two gases is lighter?
- **b.** Give a reason for the answer to **10** (a).
- **c.** Which of the two gases is heavier?
- **d.** Give a reason for the answer to **10** (c).
- **e.** When the experiment is done on a sunny day, it takes a shorter time for the white cloud to form. Give a reason.
- **11. a.** Define the term Absolute temperature.
- **b.** What happens to the molecular motion at absolute temperature?
- **12.** Explain in terms of molecules
- **a.** the process of evaporation.
- **b.** the process of freezing.
- **c.** how gas particles cause pressure on the walls of the container.
- **d.** why air pressure inside a car tyre increases when the car is being driven.
- 13. With the aid of a diagram, describe the diffusion of nickel (II) sulphate in water.

- **14.** Explain why diffusion in gases is faster than in liquid and solid.
- 15. When a candle wax is heated it melts. Explain why this happens.
- **16.** When a person opens a bottle of ammonia gas, people in all parts of the room soon notice the smell. Use kinetic theory to explain how this happens.

17. Table 3.4 shows the boiling points and melting points of some substances.

Substance	Melting point (⁰ C)	Boiling point (°C)
Sulphur	113	445
Ethanol	-117	79
Mercury	-30	357
Methane	-182	-164
Sodium hydroxide	801	1413

Table 3.4

Which substance is

- **a.** A gas at 25° C?
- **b.** A liquid at 25°C?
- **c.** A solid at 25° C?
- **18.** Describe an experiment that you would carry out to demonstrate that lighter particles travel faster than heavy particles.

CHAPTER 4

Thermometry

Objectives

At the end of chapter 4, you must be able to:

- Differentiate types of temperature scales
- Describe how various thermometers function

4.1 Types of temperature scales

Measurement of temperature

Temperature is measured using instruments called **thermometers.** Temperature is measured either in Kelvin (K) or Degrees Celsius (°C). Therefore, the two types of temperature scales are Celsius scale and Kelvin scale.

Celsius temperature scale

A Celsius scale has a lower fixed point of 0°C and the upper fixed point of 100°C. Extensions can be made above 100°C or below 0°C. The absolute zero temperature on the Celsius scale is -273°C.

Kelvin temperature scale

Temperature is the measure of the hotness and coldness of a substance or an object. Temperature is measured using instruments called **thermometers**.

Kelvin temperature scale is the scale found by Lord Kelvin in 1854. This is the scale which is used by scientists in scientific work.

The lower fixed point of the Kelvin scale is at 273.15 K (approximately 273 K).

The upper fixed point of a Kelvin scale is 373.15 K (approximately 373 K). The absolute zero temperature on the Kelvin scale is 0K.

Relating Celsius scale and Kelvin scale

The changes in temperature on both the Celsius and the Kelvin scale are the same.

The two scales can be related as follows:

Lower fixed point on Celsius scale = lower fixed point on Kelvin scale

$$0^{\circ}C = 273 \text{ K}$$

Upper fixed point on Celsius scale = upper fixed point on the Kelvin scale

$$100^{\circ}C = 373 \text{ K}$$

Converting Celsius to Kelvin

If you want to convert degrees Celsius to Kelvin, you must add 273 to the temperature in degrees Celsius.

$$Kelvin = degrees Celsius + 273$$

$$K = {}^{\mathrm{o}}C + 273$$

Worked examples

Convert the following degrees Celsius to Kelvin:

- **1.** 100°C
- **2.** -10^{0} C
- **3.** -273⁰C

Solutions

- 1. $K = {}^{0}C + 273$
 - K = 100 + 273

$$K = 373 K$$

- 2. $K = {}^{0}C + 273$
 - K = -10 + 273

$$K = 263 K$$

- 3. $K = {}^{0}C + 273$
 - K = -273 + 273
 - K = 0 K

Converting Kelvin to degrees Celsius

If you want to convert Kelvin to degrees Celsius you must subtract 273 from the temperature in Kelvin.

$$^{\circ}C = K - 273$$

Worked examples

Convert the following to degrees Celsius:

- **1.** 350 K
- **2.** 310 K
- **3.** 0k

Solutions

- 1. ${}^{0}C = K 273$
 - 0 C = 350 273
 - 0 C = **77** 0 C
- **2.** ${}^{0}C = K 273$
 - 0 C = 310 273
 - ${}^{0}C = 37 {}^{0}C$
- 3. ${}^{0}C = K 273$
 - 0 C = 0 273
 - $^{0}C = 273^{0}C$

Table 4.1shows a comparison of the Celsius and Kelvin scale.

Celsius (°c)	Kelvin (k)	Special occasion
100	373	Boiling point of water
78	351	Boiling point of ethanol
37	310	Normal body temperature
0	273	Melting point or freezing point of
		water
-273	0	Absolute zero

Exercise 4.1 In your groups, answer the following questions: 1. Convert the following to Kelvin: a. -100°C b. 200°C c. 45°C 2. Convert the following to degrees Celsius: a. 5K b. 450 K c. 15K

3. Explain why scientists prefer to use Kelvin scale over Celsius scale.

4.2 Types of thermometers

Temperature is measured by an instrument called **thermometer.** There are different types of thermometers depending on the physical property that varies with temperature.

Liquid-in-glass thermometer

Liquid-in-glass thermometer uses expansion and contraction of a liquid.

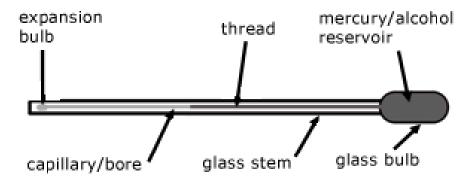


Figure 4.1: a liquid-in-glass thermometer

How a liquid-in-glass thermometer works

In the thermometer shown in **Figure 4.1** above, mercury and ethanol liquids are used. The liquid is in a thin capillary tube. When temperature increases, the walled bulb enables heat to pass through quickly, and the liquid is heated. The liquid expands to attain the temperature of the

surrounding. When temperature decreases the liquid contracts and gives the temperature of the surrounding.

A bulb of a thermometer is thin in order to enable heat energy to pass through quickly. The capillary tube is very narrow so that a small change in temperature causes a reasonable movement of the liquid. The glass stem is thick in order to prevent the glass from breaking. The glass also acts as a measuring glass. Examples of liquid-in-glass thermometer are laboratory thermometer and clinical thermometer.

Liquids used in liquid-in-glass thermometers

There are two major liquids used in liquid thermometers. These liquids are mercury and Ethanol (alcohol). Each of these liquids has the following advantages and disadvantages:

Mercury

The advantages of using mercury in a liquid thermometer are:

- **a.** It expands uniformly.
- **b.** It does not wet the sides of the tube or it does not cling to the walls of the tube.
- **c.** It is a good conductor of heat.
- **d.** It has a high boiling point of 357°C.
- e. Its specific heat capacity is very low.

The disadvantages of using mercury in liquid thermometers are:

- **a.** It freezes at -39°C, therefore mercury cannot be used in very cold regions that have temperatures below -39°C.
- **b.** It is poisonous. It would cause health hazards if the tube broke.
- **c.** Its expansivity is low.
- **d.** It is very expensive.

Alcohol

The advantages of using alcohol in liquid thermometers are:

- **a.** It expands uniformly and its freezing point is -115°C. Therefore, it can be used in very cold regions.
- **b.** It has a large expansivity. Alcohol can therefore be used in wide tubes as well.

The disadvantages of using alcohol in liquid thermometers are:

- **a.** It has to be coloured to be seen clearly.
- **b.** It wets the tube because it clings to the walls of the tube.
- **c.** It has a low boiling point of 78°C.
- **d.** Its thread has a tendency of breaking.
- e. It has a high specific heat capacity.

Clinical thermometer

A clinical thermometer is used to take the temperature of the body. The thermometer uses expansion and contraction of mercury. It has a constriction in the capillary tube just above the bulb.

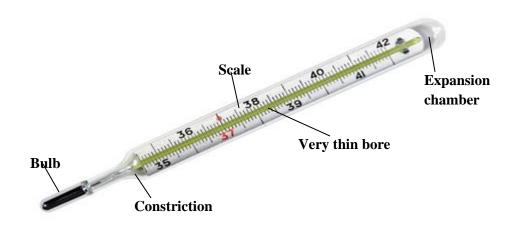


Figure 4.2 clinical thermometer

How a clinical thermometer works:

When a clinical thermometer is put in the patient's mouth or under the armpit the temperature rises. The mercury in the capillary tube expands and it is pushed through the constriction and up the tube.

When a clinical thermometer is taken out of the patient's mouth or armpit, the mercury cools and contracts. The mercury cannot go back through the constriction and the thread breaks. This is an advantage because the mercury in the tube cannot go back into the bulb and patient's temperature can be read off. You must shake the thermometer to get the mercury back into the bulb.

The scale of the clinical thermometer ranges from 35°C to 42°C since the normal body temperature is only 37°C. The short range enables the thermometer to be short. The thermometer is more accurate and has high sensitivity.

Thermocouple thermometer

A thermocouple thermometer is a thermometer which uses a thermo-electric property. It consists of two wires of different materials e.g. copper and iron.

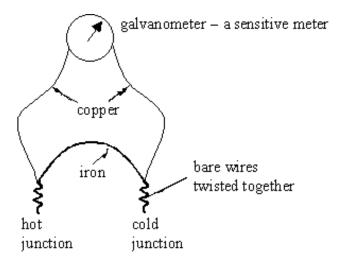


Figure 4.3: thermocouple

How a thermocouple thermometer works

When the hot junction is heated an electric current flows and produces a reading on a sensitive meter. The value of current produced depends on the temperature difference.

Advantages of a thermo couple thermometer

- **a.** It has low heat capacity. It can be used to measure fluctuating temperatures.
- **b.** It has a very large range. The range is from -200° C to 1500° C.
- **c.** It can measure the temperature at a point.

Disadvantage: A thermocouple thermometer can only be used over a certain temperature range where variation of current with temperature is uniform.

Resistance thermometer

Resistance thermometer uses the variation with temperature of the resistance of a coil of wire. **For example:** In platinum wire, the resistance of the wire decreases with an increase in temperature. In nichrome wire, the resistance of the wire increases with an increase in temperature.

Advantages of a resistance thermometer

- **a.** It is far more accurate.
- **b.** It has a very large range.
- **c.** It can be read at a distance if it has longer leads. This enables the observer to be far from where the temperature is being measured, e.g. in a blast furnace.

Exercise 4.2

In your groups, answer the following questions:

- 1. Explain why
- **a.** mercury is used in thermometers
- **b.** a clinical thermometer has a constriction.
- **2.** Discuss how you could check the lower fixed point and the upper fixed point of a liquid-in-glass thermometer.
- **3.** With the aid of a diagram, describe how a thermocouple thermometer works.

Summary

The two temperature scales are Celsius scale and Kelvin scale.

To convert Celsius to Kelvin you add 273 to temperature in degrees Celsius ($K = {}^{0}C + 273$).

To convert Kelvin to Celsius you subtract 273 from temperature in Kelvin (${}^{0}C = K-273$).

Temperature is measured by instruments called **thermometers**. Thermometers measure temperature by using physical properties.

Various types of thermometers are:

- Liquid-in-glass thermometer, e.g. laboratory thermometer and clinical thermometer
- Thermocouple thermometer
- Resistance thermometer

Student assessment

- 1. Define
 - a. Temperature
 - **b.** Heat

	~ •
7	Discuss
4.	DISCHSS

- **a.** Lower fixed point of a liquid in glass thermometer.
- **b.** Upper fixed point of a liquid in glass thermometer.
- **3.** 200°C 100°C 150°C 0°C 20°C 37°C -273°C 78°C -100°C 25°C From the above list of temperatures choose the most likely value for each of the following:
 - **a.** The room temperature
 - **b.** The normal body temperature
 - c. The melting point of water
 - **d.** The boiling point of water
 - e. The freezing point of water
 - **f.** The boiling point of ethanol
 - g. Absolute zero
- **4.** With the aid of a well labeled diagram explain how a clinical thermometer works.
- **5.** Sate **three** physical properties that are used by thermometers to measure temperature.
- **6.** Convert the following into Kelvin
 - **a.** -250° C
 - **b.** 47⁰C
 - **c.** 110^{0} C
- 7. Convert the following into degrees Celsius
 - **a.** 550K
 - **b.** 470K
 - **c.** 10K
- **8.** Give **two** differences between a laboratory thermometer and a clinical thermometer.
- **9.** Explain why an alcohol liquid thermometer might be preferred to a mercury liquid thermometer in the arctic region.
- 10. List the two advantages and two disadvantages of using mercury as thermometer liquid.
- 11. List two advantages and two disadvantages of using alcohol as thermometer liquids.
- **12.** Water is unsuitable for use in thermometers. State a reason for this.

- 13. Explain why a liquid-in-glass thermometer has the following:
 - **a.** A thin walled glass bulb.
 - **b.** A thick glass wall.
 - **c.** A very narrow capillary tube.
- **14.** If you want to manufacture a new liquid-in-glass thermometer, describe the changes that could be made to:
- **a.** give the thermometer a greater range
- **b.** make the thermometer more sensitive.
- 15. With the aid of a well labeled diagram, explain how a thermocouple works.

CHAPTER 5

Pressure

Objectives

At the end of chapter 5, you must be able to:

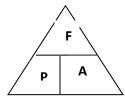
- Define pressure
- Determine pressure exerted by regular solids
- Describe experiments to investigate factors affecting pressure in liquids

5.1 What is pressure?

When forces act on a surface their effect is spread over an area. This effect creates pressure. **Pressure** is defined as the force exerted per unit area.

Pressure is calculated by dividing the force acting at right angles to the surface by the area over which it acts.

$$\mathbf{P} = \underline{\mathbf{F}} \\ \mathbf{A}$$



If force is measured in Newtons (N) and area in cm^2 , then pressure is measured in N/cm^2 . If force is measured in Newtons (N) and area in m^2 , then pressure is measured in N/m^2 .

$$1N/m^2$$
 is equivalent to 1 Pascal.

$$1N/m^2 = 1 Pa$$

For example:

If a force of 50 N acts on an area of 10cm², the pressure is 5 N/cm² If a force of 50 N acts on an area of 10m², the pressure is 5 Pa.

5.2 Pressure exerted by solids

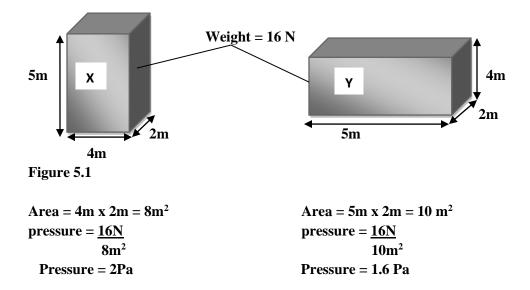


Figure 5.1 shows a box in position X and position Y.

In position X a box is exerting a force on a smaller area while in position Y a box is exerting a force on a larger area. When the force is spread over a larger area, pressure is reduced because the force on each square metre is reduced and vice versa. From **Figure 5.1**, the pressure under block X is less than the pressure under block Y.

Factors that affect pressure exerted by solids

1. Contact surface area

As it was explained in **Figure 5.1**, the size of pressure is affected by the surface area on which force is exerted.

A large surface area causes less pressure. A small area of contact increases pressure or causes high pressure. This can be demonstrated by the following examples:

a. Figure 5.2 shows two wheels of two cars of a farmer.

Figure 5.2 wheels of cars

Large surface area

When the ground is very soft, a farmer is encouraged to use a vehicle with wheel B because it has a large flat surface. A large surface produces less pressure to the ground. If a farmer uses a vehicle with wheel A, the car is likely to sink due to the small area of contact. This causes high pressure.

- **b.** If you stepped on the point of a sharp nail with your bare foot, it would be extremely painful because the surface area is very small. Hence a sharp nail exerts greater pressure on your bare foot.
- **c.** If you lie on a bed of nails-points with a large number of nails, it would not be extremely painful because the surface area of the nails has increased. Hence sharp-nails exert less pressure on your body.

2. Size of the force

Pressure exerted by solids can increase with an increase in the size of the force when surface area is kept constant because more force acts per given area.

Worked examples

1. A block weighing 200 N rests on an area of 2 m². Calculate the pressure exerted by the block on the surface which supports it.

Solution

2. Pressure exerted by a regular solid of base area 10cm² is 3N/cm². Calculate the weight of a solid.

Solution

P=3N/cm² A= 10 cm² F=?

$$F = P \times A$$

 $F = 3 \text{ N/cm}^2 \times 10 \text{ cm}^2$
 $F = 30 \text{ N}$

3. A block of mass 20 kg has the base measured 0.2 m x 1.5 m. Calculate the pressure exerted by the block to the ground.

Solution

$$F = 20 \times 10 \text{ N} = 200 \text{ N}$$

$$P = \frac{F}{A}$$

$$P = \frac{200 \text{ N}}{0.3 \text{ m}^2}$$

$$P = 666.7 \text{ Pa}$$

Exercise 5.1

In your groups, answer the following questions:

- 1. Explain why
- a. the area under the edge of the knife is extremely small
- **b.** wall foundations have a large horizontal area.
- **2.** The pressure exerted by the solid to the ground is 50 Pa. What does this mean?
- **3.** A force of 100 N acts on an area of 4 m².
- **a.** Calculate the pressure produced.
- **b.** What would the pressure be if
 - (i) The area is halved?
 - (ii) The area is doubled?
- **4.** The rectangular block of mass 10 kg has measurements 0.2 m by 0.5 m by 0.3 m. Calculate the pressure produced by the block.
- **5.** What force is produced if a pressure of 200 Pa acts on an area of 0.5 m²?

5.3 Pressure in liquids

Pressure in liquids is caused by the force exerted by the liquid molecules on the wall of the container.

Internal stresses are set up in the liquid by external forces, and these allow the pressure in a liquid to be transmitted in all directions.

Factors affecting pressure in liquids

1. Pressure in a liquid increases with depth

The deeper into the liquid, the greater the pressure because as you go deep the weight of the liquid above increases. When the weight of the liquid increases, pressure also increases.

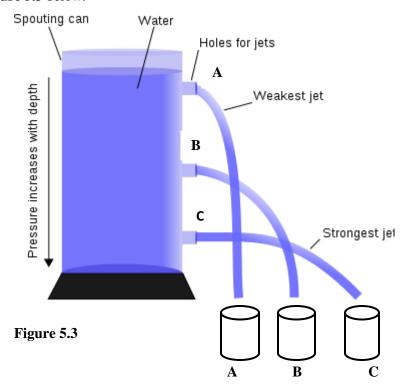
Experiment 5.1

AIM: To show that pressure in a liquid increases with depth.

MATERIALS: Spouting can, 3 beakers and water

PROCEDURE:

1. Punch 3 equal sized holes at different heights in a spouting can as shown in **Figure 5.3** below.



- 2. Stand the spouting can on one end.
- **3.** Position 3 beakers to catch the water.
- **4.** Fill the spouting can with water.
- **5.** Keep on adding water in the spouting can for some minutes.
- **6.** From which outlet is water thrust further horizontally?
- 7. Which beaker has highest water level?

RESULTS

Water from outlet C is thrust further horizontally compared to outlet B. Water from outlet B is thrust further horizontally compared to outlet A. Beaker catching water from outlet C has the highest level of water, seconded by beaker catching water from outlet B then A has the lowest level of water.

EXPLANATION

Water squirts (comes out) with greatest pressure at outlet C.

Water squirts (comes out) with least pressure at outlet A.

CONCLUSION

This shows that the pressure of water is greatest at the deepest point in the liquid. Therefore, pressure in liquid increases with depth.

2. Density

Pressure in liquid increases with density because more dense liquid is heavier or has a greater weight than a less dense liquid of the same volume. **For example,** if 1*l* of water of density 1g/cm³ and 1*l* of mercury of density 13.6g/cm³ are placed in identical containers, mercury will produce more pressure at the bottom of the container than water would because mercury is more dense than water.

Experiment 5.2

AIM: To show that pressure in liquid is affected by density

MATERIALS: A solid, spring balance, water, mercury, 2 beakers and ruler.

PROCEDURE:

- 1. Pour the same volume of water and mercury in separate identical beakers.
- 2. Weigh the block in air using the spring and record its weight as W1.

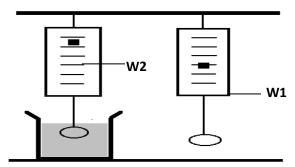


Figure 5.7

- 3. Immerse the base of the solid in water to a measured height.
- **4.** Record the new weight on the spring as W2.
- 5. Calculate the weight of water as:

 Weight of water = apparent loss in weight

 Weight of the water = W2- W1
- **6.** Repeat the experiment by immersing the block of wood in mercury to the same measured height.

RESULTS:

When a solid was immersed in water the apparent loss in weight was less than the apparent loss of weight when it was immersed in mercury.

EXPLANATION/CONCLUSION

Apparent loss of weight in water was less because water is less dense and has less weight. Apparent loss of weight in mercury was greater because mercury is denser and has more weight. The pressure exerted by water on a given area of a solid is less than the pressure exerted by mercury. Therefore, pressure in liquid is affected by density.

Calculation of pressure in a liquid

The pressure of a liquid depends on its density and depth.

To derive the formula $p = \rho hg$

Using the container shown in **Figure 5.8** below:

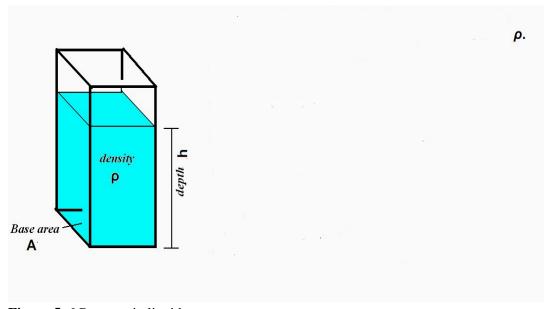


Figure 5 .6 Pressure in liquid

We consider base area of a liquid, **A** at a depth (height) of **h** and density of a liquid ρ .

Volume of a liquid = base area x depth = Ah

Mass of a liquid = density x volume = ρ x v

But
$$v = A x h$$

Therefore, mass of a liquid = ρAh

Weight of a liquid = mass x acceleration due to gravity = $\mathbf{m} \times \mathbf{g}$

But mass = ρAh

Therefore, weight of a liquid = ρAhg

Pressure = Force (weight)

Area

Pressure = ρAhg

A

Therefore, **pressure** = ρ **hg**.

The pressure of a liquid = density x depth (height) x acceleration due to gravity

Whereby: density is in kg/m³, depth(height) is in m and acceleration due to gravity is 10 m/s². **Worked examples**

1. Calculate the pressure exerted by a column of a liquid at the base of a container if the density of a liquid is 13600 kg/m^3 and its depth is 0.1m. (g = 10m/s^2)

solution

$$\begin{split} \rho &= 13600 kgm^{\text{-}3} & h = 0.1m & p = ? & g = 10m/s^2 \\ P &= \rho hg \\ P &= 13600 \ kg/m^3 \ x \ 0.1 \ x \ 10 \ m/s^2 \\ P &= 13600 \ pa \ OR \ P = 13.6 \ Kpa \end{split}$$

2. A pressure of 1000pa is exerted by a column of petrol in a tank of a car. Calculate the height of the petrol column (Density of petrol = 800kg/m^3 , g = 10m/s^2)

$$P = 1000 pa$$
 $\rho = 800 kgm^{-3}$ $g = 10 ms^{-2}$ $h = ?$
 $P = \rho hg$
 $h = \underline{p}$
 ρg
 $h = \frac{1000 Pa}{800 kg/m^3 \times 10 m/s^2}$
 $H = 0.125 m$ OR $h = 12.5 cm$.

5.4 Pascal's principle

Blaise Pascal was a French mathematician. Pascal came up with his principle of transmission of fluid pressure. Pascal's principle of transmission of pressure in fluids states that pressure exerted anywhere in an enclosed incompressible fluid is transmitted equally in all directions throughout the fluid.

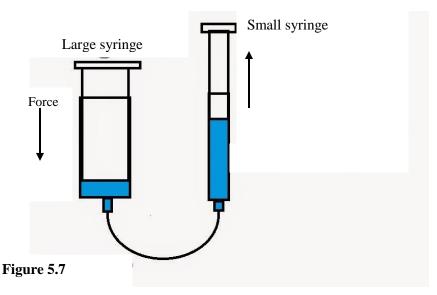
The pressure applied anywhere to a body of fluid causes a force to be transmitted equally in all directions; the force acts at right angles to any surface in contact with the fluid. This causes the pressure variations (initial differences) to remain the same.

Experiment 5.3

AIM: To investigate the transmission of pressure in liquids **MATERIALS:** Large syringe, smalle syringe, water and a pipe.

PROCEDURE:

1. Set up the experiment as shown in **Figure 5.7** below.



2. Push the plunger on the larger syringe while holding the plunger on the smaller syringe.

How do you feel on the smaller syringe?

DISCUSSION

When the piston on the plunger on the large syringe is pushed in, the person holding the plunger on the smaller syringe will feel the plunger moving out. The pressure has been transmitted through the liquid in the system.

Using Pascal's principle, the pressure in a large syringe equals the pressure in the smaller syringe.

Pressure in a large syringe = pressure in a small syringe

Worked example

If the force on a large syringe is 80 N and the area is 0.5 m^2 , calculate the force on the small syringe with area 0.1 m^2 .

Solution

Pressure in a large syringe = pressure in a small syringe

Force = Force small area

 $\frac{80 \text{ N}}{0.5 \text{ m}^2} = \frac{\text{Force on a small syringe}}{0.1 \text{ m}^2}$

Force on the small syringe = $80N \times 0.1 \text{ m}^2$ 0.5 m²

Force on a small syringe = 16 N

Exercise 5.2

In your groups, answer the following questions:

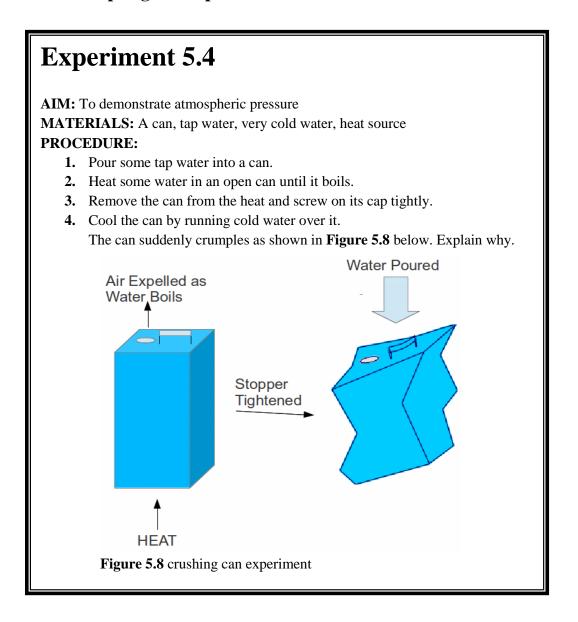
- 1. Calculate the pressure exerted by a column of water at the base of a container if the density of water is 1000 kg/m^3 and its depth is 1m. $(g = 10 \text{m/s}^2)$
- **2.** A pressure of 60 000 pa is exerted by a column of mercury in a container. Calculate the height of the mercury column (Density of petrol = 13600 kg/m^3 , $g = 10 \text{m/s}^2$)
- **3.** Discuss Pascal's principle of transmission of pressure in fluids.

5. 5 Atmospheric pressure

Atmospheric pressure is experienced because air that is called atmosphere exerts pressure on objects. This pressure is normally called **Air pressure**.

Demonstrating atmospheric pressure

1. Collapsing can experiment



The steam produced in a can replaces the air and molecules in the steam and exerts pressure on the walls of the can equal to the atmospheric pressure. The tightly screwed can suddenly crumples when it is cooled by running cold water. The steam inside the can has condensed into a very small volume of water. This leaves a partial vacuum behind. The decrease in temperature decreases the kinetic energy of molecules inside the can. The pressure inside the can decreases

and it is less than the atmospheric pressure. The pressure difference on opposite sides of the walls of the can results in a very large unbalanced force acting inwards.

2. Drinking straws

In the drinking straw, air is first sucked out of the straw. The pressure of air inside the straw is less than the atmospheric pressure which is pressing down on the surface of the liquid outside the straw. Therefore, the liquid is forced out up the straw and into the mouth.

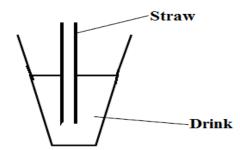
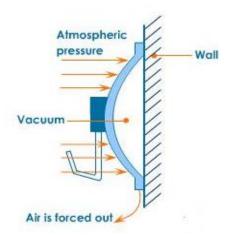


Figure 5.9 drinking through a straw

3. Rubber sucker

When the moistened concave surface of the rubber sucker is pressed against a flat surface the air between the two surfaces is squeezed out. This leaves the pressure in the enclosed space much reduced and creates a vacuum. The atmospheric pressure acting on the sucker forces the sucker against the flat surface.



4. Vacuum cleaner

In a vacuum cleaner, a fan lowers the air pressure just beyond the bag. This creates a pressure difference between the inside and outside the vacuum cleaner. The atmospheric pressure rushes

in, carrying dust and dirt with it. The dust and dirt is stopped by the bag but the air is not stopped.

Figure 5.11 vacuum cleaner

Measuring atmospheric pressure

The instruments that are used to measure atmospheric pressure are called **barometers**. The following are the types of barometers used:

1. Mercury barometer

A simple mercury barometer uses a thick walled tube of about 1 m long. It uses mercury that is poured into the tube. This mercury tube is inserted into a wider vessel containing mercury. Some mercury runs out of the tube into the vessel leaving the space at the top of the tube. The space left at the top of the tube is called a **Vacuum**.

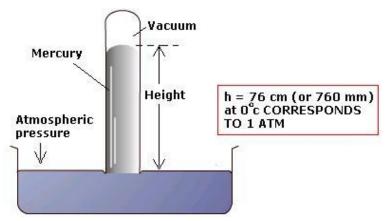


Figure 5.12 diagram of a simple mercury barometer.

How a mercury barometer works

When atmospheric pressure is acting on mercury in the vessel it pushes mercury downwards and forces it up into the tube. The mercury rises to a height that is equivalent to atmospheric pressure. The height of mercury, **h** is measured on a ruler.

Standard pressure

At sea-level, the mercury level inside the tube rises up to 760 mm of mercury (760 mm Hg). The height, **h** of mercury at sea-level is called **Standard atmospheric pressure**. Therefore, standard atmospheric pressure is 760 mmHg. 760mm Hg can also be expressed as 0.76 m Hg or 76 cm Hg.

Worked example

Calculate the atmospheric pressure in Pascals (pa) when a mercury barometer supports a column of mercury 76 cm high. (Density of mercury = 13600kg/m³)

Solution

$$\begin{split} P = ? & \quad h = 76 \ cm = 0.76 \ m \quad \rho = 13600 kg/m^3 \quad g = 10 m/s^2 \\ P = \rho hg \\ P = 13600 kg/m^3 \ x \ 0.76m \ x \ 10 m/s^2 \\ Pressure = \textbf{103360pa.} \end{split}$$

2. Water barometer

Water can be used in a barometer instead of mercury. The first water barometer was built by **Von Guericke** in the seventh century. A longer tube is required to use water in a barometer because water is far much less dense than mercury. For example, at sea level where the

atmospheric pressure is 100 000 Pa, we can calculate the height of the water in the tube as follows:

```
density of water = 1000 \text{ kg/m}^3, g = 10 \text{m/s}^2 and p = 100 000 \text{ Pa}

pressure = \rho g h

100 000 \text{ pa} = 1000 \text{ kg/m}^3 \text{ x } 10 \text{ m/s}^2 \text{ x h}

h = \underline{100 000 \text{ pa}}

1000 \text{ kg/m}^3 \text{ x } 10 \text{ m/s}^2

h = \mathbf{10} \text{ m}
```

Therefore, the level of the column of water at sea level is 10 m. The water barometer is not very useful in practice.

3. Aneroid barometer

The main feature of the aneroid barometer is the small sealed metal box containing air at low pressure.

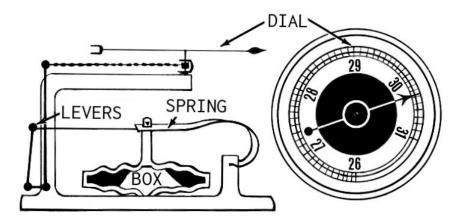


Figure 5.13 aneroid barometer

How an aneroid barometer works.

Atmospheric pressure tries to squash the metal box which is corrugated to make it more flexible in the middle. If the pressure rises, the top and the bottom of the metal box become even more squashed in. The movement of the box is magnified by a lever. The lever pulls a chain which moves the pointer further up the scale.

Aneroid barometers are more portable, much easier to use and cheaper than mercury barometers.

Exercise 5.3

In your groups, answer the following questions:

- **1.** Calculate the value of atmospheric pressure in Pa when the level of mercury in a mercury barometer is 700 mm Hg.
- **2.** Explain why mercury is used in a barometer rather than water.
- **3.** Thee Atmospheric pressure is 103333 Pa. Calculate the height of mercury in the tube in:
- a. mm Hg
- **b.** m Hg
- c. cm Hg
- **4.** State **two** common properties of atmospheric pressure and liquid pressure.

5.6 Applications of pressure

Applications of pressure in liquids

Pressure in liquids is used in the following:

1. Hydraulic machines

Hydraulic machines are used to lift the weight of a body. Examples of hydraulic machines are hydraulic folk lifters, hydraulic jacks, hydraulic brakes and hydraulic loaders. Hydraulic machines operate by using Pascal's principle of transmission of pressure in fluids. This happens because liquids are incompressible, so when the liquid is pressed, pressure is transmitted to all parts of the liquid and the pressure is the same.

In hydraulic machines a small force (effort) move a large force (load) as shown in **Figure 5.14**.

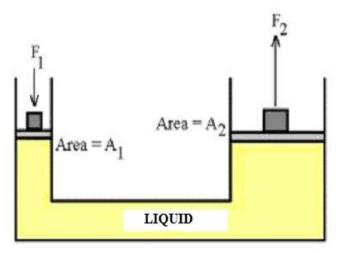


Figure 5.14 hydraulic machine.

When an effort, F_1 is applied at A_1 , the small piston is pushed down and a liquid gets pushed through the pipe.

The liquid is forced to push the load at A_2 upwards. The same pressure applied by the liquid at A_1 is the same pressure that is used to lift up the load.

Pressure at $A_1 = \underline{force}$

Area

Pressure at A_2 = pressure at A_1

Upward force on a load at A_2 = pressure at A_1 x Area at A_2

Worked example

Figure 5.15 is a diagram showing a simple hydraulic machine used to lift a load.

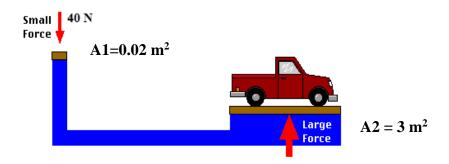


Figure 5.15

Solution

Effort =
$$40 \text{ N} \text{ A}_1 = 0.02 \text{ m}^2$$
 Load =? $A_2 = 3\text{m}^2$

a. Pressure exerted by a load of 40N

$$P = \underline{\quad F \quad} = \underline{effort} \\ A \quad A_1$$

$$P = 40 \text{ N} \over 0.02 \text{ m}^2$$

 $P = 2000 \text{ pa}$

b. Thrust(force) on the load

Force = pressure x area, A_2

 $F = 2000 \; pa \; x \; 3 \; m^2$

F = 6000 N.

OR

$$\frac{Force (effort)}{A_1} = \frac{Force (load)}{A_2}$$

$$\frac{Force (load)}{A2} = \frac{Force (effort)}{A_1}$$

Force (load) =
$$\frac{\text{Force (effort) x A2}}{A_1}$$

$$= \frac{40 \text{ N x 3 m}^2}{0.02 \text{ m}^2}$$

Force on the load = 6000N.

2. Construction of dams

Liquid pressure is used in construction of dams. The bottom of the dam is made thicker in order to withstand liquid pressure which increases with depth.

3. Water supply systems

The water supply comes from a reservoir on high ground. The water flows through the pipe to the taps and storage tanks that are at a lower level because liquid pressure increases with depth.

Applications of Atmospheric (air) pressure

The following are the applications of atmospheric pressure in our everyday life:

- 1. Drinking straw
- 2. Rubber sucker
- 3. Syringe

These applications have already been explained in **section 5.5**.

5.7 Archimedes' principle

Why do ships float on water when in fact they should sink? Why does paper float on water and a paperweight sink?

The underlying fact on which the principle is based was discovered by **Archimedes** in about **300 B.C.** The story goes that the King of Sicily suspected that the goldsmith had mixed some silver in his crown and cheated him. Without destroying the crown, he wanted to know the truth. Archimedes was asked to find out whether this was so, without destroying the crown.

One day, while getting into his bath he noticed water spilling over the sides. In a flash, Archimedes realised the relationship between the water that had splashed out and the weight of his body. It seems that Archimedes got the solution. Archimedes was so excited with his discovery that he leapt out of the bath, and rushed naked into the streets yelling triumphantly, 'Eureka!' (Greek word for 'I have found it!).

He obtained a lump of pure gold and a lump of pure silver, each with a weight equal to that of the crown. By immersing each in a vessel full of water he collected the volume of water which overflowed. The volumes were all found to be different. So the crown was not pure.

Archimedes' principle

When an object is immersed in a liquid the liquid exerts an upward force which is known as **upthrust.** Therefore, an object weighs less in water than in air. If an object weighs 10 N in air and it weighs 7 N when immersed in water, the upthrust is found as:

Upthrust = Weight of an object in air—weight of an object in water Upthrust = 10 N - 7 N = 3 N

The weight of an object in water which is lower than the real weight of an object is called **apparent weight.**

Upthrust is proportional to the weight of displaced liquid.

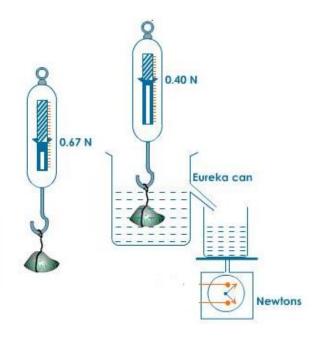


Figure 5.16 apparent weight

The upthrust of the object in **Figure 5.16** = 0.67 N - 0.40 N = 0.27 N

The 0.67 N object has an upthrust of 0.27 N. Therefore, it displaces 0.27 N of water. The 0.67 N object feels like it only weighs 0.40 N under water. Therefore, apparent weight of an object is 0.40 N.

Archimedes' principle states that 'if a body is totally or partially immersed in a fluid (gas or liquid) the fluid exerts an upthrust which is equal to the weight of the fluid displaced'.

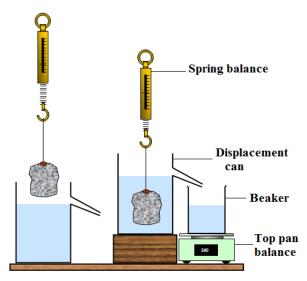
Experiment 5.5

AIM: To verify Archimedes' principle

MATERIALS: Beaker, mass, displacement can, spring balance, top pan balance, a small block

PROCEDURE:

- 1. Suspend (hang) the block in air from the spring balance. Record its weight.
- 2. Fill the displacement can with water until it reaches a point of overflowing.
- 3. Place a clean, dry empty beaker on a top pan balance. Calculate its weight as m (in kg) x 10 kg/N.
- **4.** Place an empty beaker under the spout of the displacement can.
- **5.** Carefully lower the block, still attached to the spring balance.



6. Record the Figure 5.16

- 7. Calculate the apparent loss in weight (upthrust).
- **8.** Place a beaker containing displaced water on a top pan balance. Calculate its weight as m (in kg) x 10 kg/N.
- **9.** Calculate the weight of the displaced water as follows: Weight of displaced water = weight of beaker containing water weight of an empty beaker.
- 10. Set down the results as follows:

Weight of a block in air = N
Weight of a block in water = N
Apparent loss in weight of a block (upthrust) = N
Weight of an empty beaker = N
Weight of a beaker with displaced water = N
Weight of displaced water = N

Compare the apparent loss in weight of a block and weight of displaced water. Discuss your results with your friends in class.

EXPLANATION/CONCLUSION

From **experiment 5.5** the apparent loss in weight (upthrust) of a block must be equal (or approximately equal) to the weight of displaced water.

Apparent loss in weight of a block (upthrust) = weight of the displaced water.

The displacement can in Archimedes' principle is also called Eureka can.

Relative density of a substance

Relative density of a substance is the ratio of the density of any volume of substance to the density of an equal volume of water.

Relative density = <u>density of any volume of substance</u>

density of an equal volume of water

For example: If the density of mercury is 13600 kg/m^3 and the density of equal volume of water is 100 kg/m^3 ,

Relative density of mercury =
$$\frac{13600 \text{ kg/m}^3}{1000 \text{ kg/m}^3}$$
 = **13.6**

Relative density of a substance can also be defined as the ratio of the mass of any volume of substance to the mass of an equal volume of water.

Relative density = $\frac{\text{mass of any volume of substance}}{\text{mass of an equal volume of water}}$

For example: If the mass of a block is 10 kg and the mass of water is 1 kg,

Relative density of a block =
$$\frac{10 \text{ kg}}{1 \text{ kg}} = 1$$

Relative density of a substance can also be defined as the ratio of the weight of an object to the apparent loss of weight in water.

For example: If the weight of a block is 100 N and the apparent loss of weight in water is 40 N, Relative density of mercury = $\frac{100 \text{ N}}{40 \text{ N}} = 2.5$

Law of floatation

An object which is placed in a fluid will float if the upthrust acting on it is strong enough to support its weight.

If a 100 N block is lowered into water, the upthrust acting on it rises. This causes more water to be displaced. The block will float when the upthrust reaches 100 N. Therefore, the weight of the displaced water is also 100 N. This means that the weight of the displaced water is equal to the weight of a block.

Weight of a displaced water = upthrust = weight of a block

The law of floatation states that a **floating object displaces its own weight of the fluid in which** it floats.

The concept of the law of floatation can be applied when considering why objects float. Consider 100 000 N block of solid iron. As iron is nearly eight times denser than water, it displaces only 1/8 of 100 000 N of water when submerged, which is not enough to keep it afloat. Suppose the same iron block is reshaped into a ship. It still weighs 100 000 N, but when it is put in water, it displaces a greater volume of water than when it was a block. The deeper the iron ship is immersed, the more water it displaces, and the greater the upthrust force acting on it. When the upthrust force equals 100 000 N, it will sink no farther.

Since a floating object displaces a weight of fluid equal to its own weight, every ship must be designed to displace a weight of fluid equal to its own weight. A 100 000 N ship must be built wide enough to displace 100 000 N of water before it sinks too deep in the water. The same is true for vessels in air (as air is a fluid): an aeroplane that weighs 10 000N displaces at least 10 000 N of air. If it displaces more, it rises; if it displaces less, it falls. If an aeroplane displaces exactly its weight, it hovers at a constant altitude.

Applications of Archimedes' principle

Archimedes' principle and law of floatation can be used in:

- 1. Floating of solids in a fluid: When a block is dropped in water, it floats because it displaces water equal to its own weight. The density of a block of solid is less than the density of water. A large ship floats on water by using law of floatation. This is also possible because the ship contains a lot of spaces that are filled with air. The average density of the ship becomes less than the density of water.
- **2.** Explaining why hot-air balloons rise: When the air in the balloon increases, its volume also increases. An increase in volume increases the weight of the air displaced by the balloon. The balloon then floats. The balloon can also float when the gas burner can heat

the air inside at 100°C. The air in the balloon expands and pushes out through the hole at the bottom. This reduces the weight of the air in the balloon. The hot air also becomes less dense which helps in the floating of the hot air balloon.

- 3. Checking the purity of a material as it was done by Archimedes.
- **4. Hydrometer:** a useful instrument in which the Principle of floatation is applied. It floats at different levels in liquids of different densities.

Hydrometer floats less in methylated spirit than water because methylated spirit is less dense than water.

The hydrometer sinks in the liquid and only floats when the weight of the liquid displaced is equal to the weight of the hydrometer. Therefore, it is used to measure the density of the liquid in kg/m³, check the quality of beer and milk and test the state of charge of car batteries.

Calculations on Archimedes' principle and floatation

Worked examples

1. A boat floating on water weighs 8 000 N.

What is

- **a.** the upthrust acting on the boat?
- **b.** the weight of the water displaced by the boat?

Solution

- **a.** weight of a boat = upthrust = 8000 N
- **b.** weight of displaced water = weight of a boat = 8000 N
- **2.** The mass of a metal bar in air is 0.5 kg and its mass is 0.3 kg when immersed in water. Calculate:
 - **a.** The weight of a metal bar in air.
 - **b.** The weight of a metal bar when immersed in water.
 - **c.** The apparent loss in weight of a metal bar.
 - **d.** The upthrust acting on a metal bar.

Solution

a. Weight in air = $m \times g$

$$= 0.5 \text{ kg x } 10 \text{ m/s}^2$$

Weight in air = 5 N

b. Weight when immersed in water = $m \times g$

$$= 0.3 \text{ kg x } 10 \text{ m/s}^2$$

Weight when immersed in water = 3 N

c. Apparent loss in weight = weight in air - weight when immersed in water

$$= 5 N - 3 N$$

Apparent loss in weight = 2 N

d. Upthust = apparent loss in weight = 2N

Exercise 5.4

In your groups, answer the following questions:

- 1. Explain the following:
- **a.** A hot air balloon floats when the air inside is heated by a burner.
- **b.** A steel ship floats on water.
- 2. A block of metal of mass 2000 kg floats on water.
- **a.** Calculate the size of upthrust acting on a block of metal.
- **b.** State the weight of the displaced water.
- **3.** The density of petrol is 800 kg/m³ and the density of water is 1000 kg/m³. In which liquid will the object experience more upthrust? Give a reason for your answer.
- **4.** An iron bar weighs 500 N in air and it weighs 200 N when immersed in paraffin. Calculate
- **a.** The apparent loss in weight of a metal bar
- **b.** The upthust acting on an iron bar.

Summary

Pressure is the force exerted per given area. Pressure is measured in Pascals.

Pressure exerted by a regular solid depends on the size of force and its surface area.

Properties of liquid pressure are:

- it acts in all directions
- depends on density
- depends on depth

Pressure in a liquid is found by using a formula, $P = \rho gh$

Pascal's principle in liquids states that pressure exerted anywhere in an enclosed incompressible fluid is transmitted equally in all directions throughout the fluid. Pascal's principle in liquids is applied in hydraulic machines, syringes and siphons.

Atmospheric pressure is caused by the force exerted by air particles per given area on the walls of the object in the atmosphere. Atmospheric pressure is used in drinking straws, rubber suckers and vacuum cleaners. Atmospheric pressure is measured by an instrument called **barometer**, e.g. mercury barometer.

Archimedes' principle states that 'if a body is totally or partially immersed in a fluid (gas or liquid) the fluid exerts an upthrust which is equal to the weight of the fluid displaced'. The law of floatation states that a floating object displaces its own weight of the fluid in which it floats.

Archimedes' principle and law of floatation is applied in floating solids on a liquid, floating of a hot air balloon and hydrometers.

Student assessment

- 1. Define
 - a. pressure
 - **b.** upthrust
- 2. With the aid of a diagram explain how atmospheric pressure is caused.
- **3.** State **three** factors that affect pressure in liquids.
- **4.** A block weighing 200 N rests on an area of 2 m². Calculate the pressure exerted by the block on the surface which supports it.
- **5.** Derive a formula to show that the pressure of a liquid depends on depth and density.
- **6.** At atmospheric pressure a barometer reads 76 cm. If one atmosphere equals to 101 000 Pa, calculate the density of mercury.
- 7. Calculate the pressure exerted by a column of a liquid at the base of a container if the density of a liquid is 13600 kg/m^3 and its depth is $0.1 \text{ m. } (g = 10 \text{ m/s}^2)$.
- **8.** A pressure of 1000 pa is exerted by a column of petrol in a tank of a car. Calculate the height of the petrol column. (Density of petrol = 800 kg/m^3 , g= 10 m/s^2).

9. Figure 5.17 is a diagram showing a simple hydraulic machine used to lift a load.

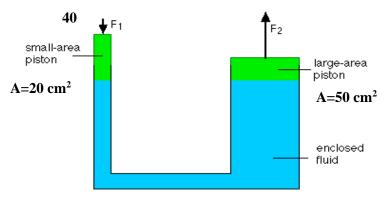


Figure 5.17

- **a.** Calculate the pressure exerted on the liquid by an effort of 40N.
- **b.** Calculate the thrust (Force), F2.
- **10.** Calculate the atmospheric pressure in Pa when a mercury barometer supports a column of mercury 76 cm high. (Density of mercury = 13600 kg/m³)
- **11.** The mass hits a wall. The average force exerted on the wall during the impact is 100 N. The area of the mass in contact with the wall at impact is 0.03 m². Calculate the average pressure that the mass exerts on the wall during the impact.
- **12. a.** A woman weighs 700 N and the total area of her shoes in contact with the ground is 0.0025 m². A man weighs 600 N and the total area of his shoes in contact with the round is 0.003 m². Calculate the pressure exerted by
 - i. the woman
 - ii. the man to the ground.
 - **b.** Which one exerts greater pressure on the ground?

13. State

- a. the Archimedes' principle
- **b.** the law of floatation.
- **14.** A bowl weighs 10 N. If it floats in water, state
 - a. the upthrust exerted on the boil
 - **b.** the weight of the displaced water.

15. The density of water is 1000 kg/m³. Use **table 5.1** to answer the questions that follow.

Table 5.1

I WOIC CII	
Substance	Density (kg/m³)
Mercury	13600
Paraffin	800
Polythene	950
Pine	500
Granite	2700

- **a.** Which substance (s) will float in water?
- **b.** Give a reason for your answer in **15** (a).
- c. For substance (s) in 15 (a), state the upthrust exerted on each substance by water.
- 16. A loaded tanker weighs 3 300 000 N and it floats on the lake.
 - a. State
 - i. the size of upthrust on the loaded tank
 - ii. the weight of the water displaced by the loaded tanker.
 - **b.** If 500 000 N of oil is off loaded,
 - i. Calculate the weight of the loaded tanker.
 - ii. State the size of the upthrust on the loaded tanker.
 - c. Explain what happens on the tanker after off loading the 500 000 N of oil.
- 17. A block of solid weighs 25 N in air and it weighs 15 N when immersed in water.
 - **a.** Calculate the apparent loss in weight.
 - **b.** State the upthrust exerted on the block of solid by water.
 - **c.** State the weight of the displaced water.
 - **d.** What will happen to the apparent loss in water if
 - i. a block was immersed in a liquid less dense than water?
 - ii. a block was immersed in a liquid denser than water?
- **18.** The depth of the water in a dam is 4 m.
- **a.** Calculate the pressure exerted by water at the bottom of the dam. ($g = 10 \text{m/s}^2$ and density of water = 1000 kg/m^3)
- **b.** Explain why the dam is thicker at the base than at the top.

19. Figure 5.18 shows a pipe with one end wider than the other, containing oil.

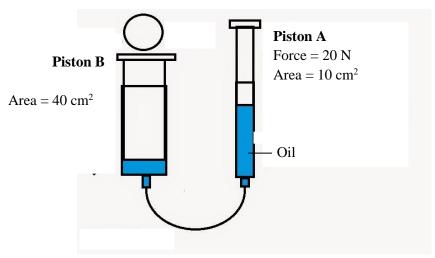


Figure 5.18

- **a.** Calculate the pressure applied to the oil if piston A is pushed into the pipe.
- **b.** What pressure is exerted at piston B?
- c. Calculate the force exerted at piston B.
- d. Explain how Pascal's principle of transmission of pressure in fluids is applied.
- **20.** With the aid of a well labeled diagram, explain how a mercury barometer is used to measure atmospheric pressure.
- 21. Describe an experiment that you would carry out in order to verify Archimedes' principle.

CHAPTER 6

Gas laws

Objectives

After the end of chapter 6, you must be able to:

- Discuss gas laws
- Explain applications of gas laws

6.1 Gas laws

Behaviour of a gas depends on three factors:

- Pressure
- Volume
- Temperature

Gas laws were discovered by using the volume, temperature and pressure of the gas. There were relations that were used to describe the gas laws. In these relations two of the factors mentioned above were varied while one factor was kept constant.

Boyle's law

Boyle was relating pressure and volume at constant temperature. Boyle's law was published in 1662.

Experiment 6.1

AIM: To investigate the relationship between pressure and volume at constant temperature.

MATERIALS: Boyle's law apparatus, foot pump

PROCEDURE:

1. Connect the apparatus as shown in Figure 6.1.

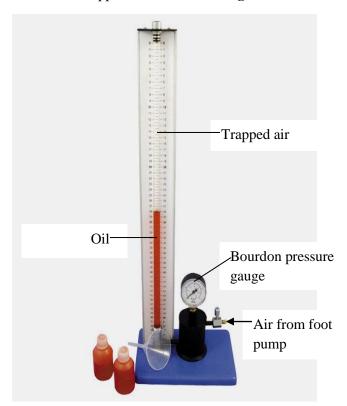


Figure 6.1

- 2. Pump in air by using a foot pump.
- **3.** Check and record the volume of the trapped air in the tube then check and record the pressure reading on the Bourdon pressure gauge.

Explain what you have noticed.

RESULTS

When the air is pumped in from the foot pump, the level of air in the reservoir decreases and the oil is pushed upwards in the glass tube.

The following will be noticed:

- The volume of the trapped air in the tube decreases.
- The reading on the pressure gauge increases.

The readings can be plotted on the graph as shown in **Figure 6.2**.

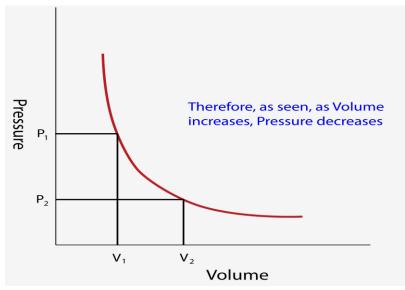


Figure 6.2 graph of pressure of the gas against volume

EXPLANATION

From the graph in **Figure 6.2**, we can notice that if the volume halves, the pressure doubles. This shows that the pressure of a fixed mass of a gas increases with a decrease in volume at a constant temperature. This can be demonstrated in **Figure 6.3**.

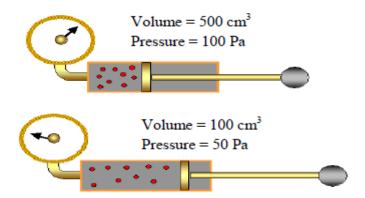


Figure 6.3 relationship between volume and pressure

When the volume of the container containing the gas is reduced, pressure increases because decreasing the volume of the container increases the impact on the walls of the container. Hence force increases that cause an increase in pressure.

Boyle's law states that the pressure of a fixed mass of gas is inversely proportional to its volume provided the temperature of the gas is kept constant.

$$P \alpha \underline{1}$$
 V

$$PV = Constant, T$$

If pressure is plotted against 1/v, the graph is a straight line and it passes through the origin, as shown in **Figure 6.4**:

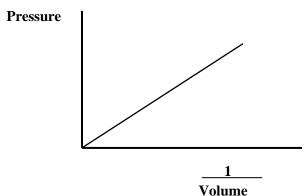


Figure 6.4 pressure is directly proportional to 1/volume

At constant temperature

$$P1 \times V1 = P2 \times V2$$

Worked example

At a constant temperature, the pressure of a gas with volume 20 m³ is 2000 Pa. Calculate the volume of the gas if its pressure is 5000 Pa.

Solution

Charles' Law

Charles was relating volume and temperature of a gas at constant pressure. Charles' law was found in 1787 by Jacques Charles.

Experiment 6.2

AIM: To investigate the relationship between volume and temperature at constant pressure. **MATERIALS:** Thermometer, container, rubber band, oil, water, capillary tube and heat source **PROCEDURE:**

1. Set up the experiment as shown in **Figure 6.5** below.

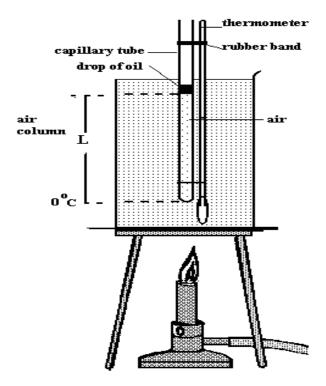


Figure 6.5

- 2. Heat the water in the container.
- **3.** Check the change in the length of the trapped air column.

RESULTS

When the water in the container is heated, the length of the trapped air column also increases. The results can be plotted on a graph as shown in **Figure 6.6**.

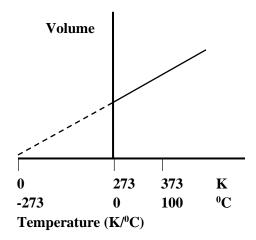


Figure 6.6 graph of volume against temperature

EXPLANATION

From the graph in **Figure 6.6**, it shows that:

- It is a straightline graph.
- Volume is halved when temperature is halved.
- Volume is doubled when temperature is doubled.

Volume of a fixed mass of a gas increases with an increase in temperature at a constant pressure because the kinetic energy of the molecules increases. This makes the molecules move further apart. When the molecules move further apart the volume occupied by the molecules increases.

Charles' Law states that the volume of a fixed mass of gas is directly proportional to its absolute temperature provided the pressure of the gas is kept constant.

$$\mathbf{V} \alpha \mathbf{T}$$

$$\frac{\mathbf{V}}{\mathbf{T}} = \text{constant, which is P.}$$
At constant pressure,

$$\frac{\mathbf{V1}}{\mathbf{T1}} = \frac{\mathbf{V2}}{\mathbf{T2}}$$

Worked example

At constant pressure, the temperature of 40 cm³ of a gas is 55°C. What is temperature of 80 cm³ of the gas?

Solution

$$V1 = 40 \text{ cm}^3$$
 $V2 = 80 \text{ cm}^3$
 $T1 = 55+273=328 \text{ K}$ $T2 = ?$

$$\underline{V1} = \underline{V2}$$

$$40 = 80$$

$$40 \times T2 = 80 \times 328$$

$$T2 = 80 \times 328$$

$$T2 = 656 \text{ K or } 383 \,{}^{0}\text{C}$$

Pressure law

Pressure law relates pressure to temperature at constant volume. Pressure law which is also known as **Gay-Lussac's law** was found by Joseph Louis Gay-Lussac in 1809.

Experiment 6.3

AIM: To investigate the relationship between pressure and temperature at constant volume. **MATERIALS:** Container, sources of heat, thermometer, flask, water, tubing, Bourdon pressure gauge, thermometer.

PROCEDURE:

1. Set up an experiment as shown in **Figure 6.7**.

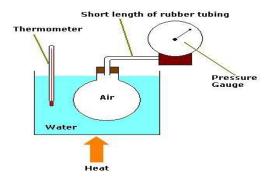


Figure 6.7

- 2. Heat the water in the container.
- **3.** Record the temperature and pressure readings.

RESULTS:

When water is heated, both temperature and pressure increases. The results can be used to plot a graph as shown in **Figure 6.8** below:

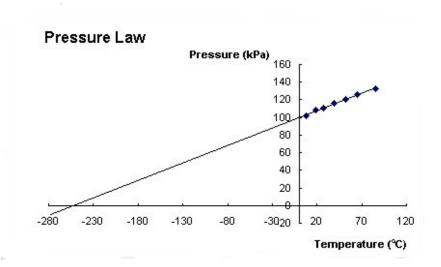


Figure 6.8 graph of pressure of the gas against temperature

EXPLANATION

Increasing the temperature of a gas increases the kinetic energy of gas molecules. Hence the force at which the molecules bombard the sides of the container increases since P=F/A. From the graph in **Figure 6.8**, it shows that:

- It is a straightline graph.
- Pressure is halved when temperature is halved.
- Pressure is doubled when temperature is doubled.

Pressure law states that the pressure of a fixed mass of a gas is directly proportional to its temperature at constant volume.

T1 T2

Whereby:

P1is the initial pressure

P2 is the final pressure

V1 is the initial volume

V2 is the final volume

Worked example

At a constant volume, the pressure of a gas is 1.5×10^5 Pa and temperature is 80° C. What will be the new pressure if the temperature has decreased to 25° C?

Solution

P1 =
$$1.5 \times 10^5$$
 Pa P2 =?
T1 = $80 + 273 = 353$ K T2 = $25 + 273 = 298$ K

$$\frac{P1}{P1} = \frac{P2}{P2}$$
T1 T2
$$\frac{1.5 \times 10^5}{298} = \frac{P2}{298}$$

$$\frac{298 \times 1.5 \times 10^5}{298} = P2$$

 $P2 = 126629 \text{ Pa or } 1.3 \times 10^5 \text{ Pa}$

The combined gas equation

The combined gas law or general gas law is an equation formed by the combination of the three gas laws, and shows the relationship between the pressure, volume and temperature for a fixed mass of gas.

Gas equations can be summarized as follows:

Pressure law:
$$\frac{P}{T}$$
 = constant, which is V.

Boyle's law: PV = constant, which is T.

Charles' law:
$$\frac{V}{T}$$
 = constant, which is P.

For a fixed mass of gas, the combined gas equation becomes;

$$\frac{PV}{T}$$
 = constant

Initial gas law is given as:

$$\frac{P1V1}{T1} = constant$$

After changes the equation changes into;

$$\frac{P2V2}{T2}$$
 = constant

These two equations are related as follows;

$$\frac{P1V1}{T1} = \frac{P2V2}{T2}$$

Whereby:

P1 is pressure before change in any appropriate unit provided the same unit is used on both sides of the equation.

V1 is volume before change in any appropriate unit provided the same unit is used on both sides of the equation.

T1 is temperature before change in Kelvin (K).

P2 is pressure after change in any appropriate unit provided the same unit is used on both sides of the equation.

V2 is volume after change in any appropriate unit provided the same unit is used on both sides of the equation.

T2 is temperature after change in Kelvin, K.

Worked Examples

1. A cylinder has a volume of 0.12 m³ and contains nitrogen gas at a pressure of 1620 Pa and temperature of 20°C. After some of the gas has been consumed, it is found that the pressure has fallen to 1100 pa and the temperature is then 10°C. Determine the volume of the gas.

Solution

$$V_1 = 0.12 \text{m}^3$$
 $P_1 = 1620 \text{ Pa}$ $T_1 = 20 + 173 \text{K} = 193 \text{K}$

$$V2=? P2=1100 Pa$$

$$\frac{P1V1}{T1} = \frac{P2V2}{T2}$$

$$\frac{1620 Pa x 0.12m^3}{193K} = \frac{110Pa x V2}{183K}$$

$$1.007 = 0.601 xV2$$

$$V2= \frac{1.007}{0.601}$$

2. A tyre has a volume of 0.055 m^3 and contains air at a pressure of 145 Pa and a temperature of 280K. What temperature does the tyre have if its pressure is to be increased to 196 Pa assuming the volume of the tyre has increased to 0.52 m^3 ?

T2= 10+173=183K

$$V1 = 0.055 \text{ m}^3$$
 $T1=280 \text{ K}$ $P1 = 145 \text{ Pa}$ $V2 = 0.52 \text{ m}^3$ $T2=?$ $P2 = 196 \text{ Pa}$

Solution

$$\frac{P1 \times V1}{T1} = \frac{P2 \times V2}{T2}$$

 $V2 = 1.68 \text{ m}^3$

$$\frac{145 \text{ Pa x } 0.055 \text{ m}^3}{280 \text{ K}} = \frac{196 \text{ Pa x } 0.52 \text{ m}^3}{\text{T2}}$$

$$0.028 = 101.92$$
 $T2$
 $0.028 \times T2 = 101.92$

$$T2 = \frac{101.92}{0.028}$$
 $T2 = 3640K$

Exercise

In your groups, answer the following questions:

- **1.** Explain the following:
- a. Pressure of a fixed mass of a gas increases with a decrease in volume at a constant temperature.
- **b.** Volume of a fixed mass of a gas decreases with a decrease in temperature at a constant pressure.
- **2.** A gas syringe contains 80 cm^3 of oxygen gas at 50° C. If the temperature was increased to 80° C, calculate the new volume of the gas, assuming constant pressure throughout.
- **3.** A gas syringe contains 50 cm³ of air at a pressure of 3 atmospheres. If the pressure was decreased to 1.5 atmospheres, calculate the new volume of the gas, assuming constant temperature throughout.
- **4.** The volume of a gas at 40° C and pressure $1x10^{5}$ Pa was 60 m³. Calculate the volume of a gas at 0° C and pressure $3x10^{5}$ Pa.

6.2 Applications of gas laws

Gas laws can be applied in the following:

1. Bicycle pump

A bicycle pump uses Boyle's law, which states that the pressure of the fixed mass of a gas increases with a decrease in volume at constant temperature.

2. Car tyre

When a car is travelling at a high speed its tyres get inflated. This happens because the gases inside the tyre get heated and collide on the walls of the tyre with greater force and, most often, which causes more pressure to be exerted on the walls of the tyre.

3. Scuba diving

Scuba stands for self-contained underwater breathing apparatus. Divers carry tanks of compressed gas to breathe under water. As they dive deeper, the water exerts pressure on their bodies and the tanks. The air in the tanks has to be regulated and the pressure reduced so that it is the same as the pressure of the surrounding water. The volume of air in their bodies decreases as the pressure increases, using Boyle's law. This makes the divers to descend quickly.

4. The constant volume gas thermometer

The constant volume gas thermometer is similar to the apparatus used to establish the pressure law. It uses pressure law, which states that the pressure of a gas increases with an increase in temperature at a constant volume, in order to measure the temperature.

6.3 Measuring gas pressure

Manometer is used to find gas pressure.

The manometer shown in **Figure 6.9** is used to measure gas pressure.

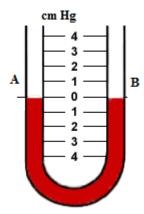


Figure 6.9 the level of mercury before opening the gas supply.

The levels of mercury in columns A and B are the same because they experience the same standard atmospheric pressure (760 mm Hg).

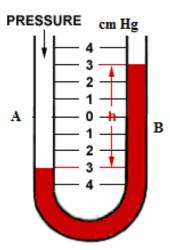


Figure 6.10 shows the same manometer after opening the gas supply.

The level of mercury in A has decreased while in B it has increased because gas pressure has pushed mercury downwards in A and forced mercury upwards in B.

For the mercury to rise in B, at first it was equal to atmospheric pressure, then it overcame the atmospheric pressure.

Gas pressure equals atmospheric pressure plus difference of levels of mercury in A and B.

Difference in the levels of mercury = h

Gas pressure = Atmospheric pressure + h

Gas pressure = 760 mm Hg + h

A manometer is used to measure lung pressure by blowing in gas from your lungs.

Lung pressure = 760 mm Hg + h

Worked example

Figure 6.11 is a diagram of a manometer used to measure gas pressure. The readings are in cm Hg.

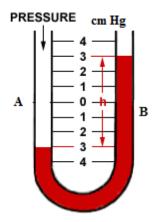


Figure 6.11

- **a.** Read the pressure difference in mmHg.
- **b.** Calculate the pressure of the gas supply if the atmospheric pressure is 760 mm Hg.

Solution

- **a.** h = 6 cm Hg = 60 mm Hg
- **b.** Pressure of the gas supply = standard atmospheric pressure + pressure difference

= 760 mm Hg + 60 mmHg

Pressure of the gas supply = 820 mm Hg

Summary

The properties of the fixed mass of an ideal gas are affected by temperature, pressure and volume.

Boyle's law states that the pressure of a fixed mass of a gas is inversely proportional to volume when temperature is kept constant.

$$P1V1 = P2V2$$

Charles' law states that volume of a fixed mass of a gas is directly proportional to temperature when pressure is kept constant.

$$\frac{\mathbf{V1}}{\mathbf{T1}} = \frac{\mathbf{V2}}{\mathbf{T2}}$$

$$\frac{P1}{T1} = \frac{P2}{T2}$$

The general equation for the general gas law is given as:

$$\frac{P1V1}{T1} = \frac{P2V2}{T2}$$

Gas laws are used in bicycle pump, car tyre, scuba diving and constant volume gas thermometer. A manometer is an instrument which is used to measure lung pressure or air pressure.

Student assessment

- 1. State the
 - a. Boyle's law
 - b. Charles' law
 - c. Pressure law
- **2.** Explain, using the kinetic theory, the following:
 - **a.** Pressure of a fixed mass of a gas is inversely proportional to volume at constant temperature.
 - **b.** Volume of a fixed mass of a gas is directly proportional to temperature at constant pressure.

- **c.** Pressure of a fixed mass of a gas is directly proportional to temperature at constant volume.
- **3.** Table 6.1 shows results obtained from an experiment to verify pressure law.

Temperature (⁰ C)	25	30	35	40	45
Pressure (Pa)	10	20	30	40	50

Table 6.1

- **a.** Plot a graph to show the relationship between pressure and volume.
- **b.** How can you tell that the graph obeys Boyle's law?
- **c.** State **two** variables that were kept constant in this investigation.
- **d.** From the graph, what is the temperature at the pressure of 32.5 Pa? Show on the graph how you have found the answer.
- **4.** A student sets up a mercury barometer at the top of a mountain. She finds that the length of the mercury column is 0.70 m. Calculate the atmospheric pressure in Pa. (density of mercury = 13600 kg/m^3 and g = 10 m/s^2).
- **5. Figure 6.12** shows a sealed glass syringe that contains air and many very tiny suspended dust particles.

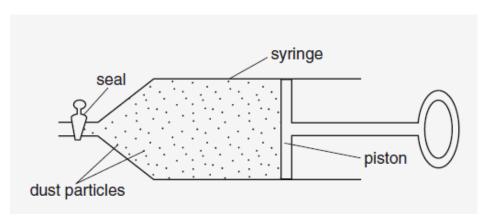


Figure 6.12

- **a.** Explain why the dust particles are suspended in the air and do not settle to the bottom. **b.** The air in the syringe is at a pressure of 1.0×10^5 Pa. The piston is slowly moved into the syringe, keeping the temperature constant, until the volume of the air is reduced from 55 cm^3 to 25 cm^3 . Calculate the final pressure of the air.
- **6.** Hydrogen gas in a container has a volume of 0.11 m³ at a pressure of 1200 Pa and temperature of 15^oC. What will be the new volume of the gas at 10^oC and pressure of 970 Pa?

- 7. A balloon, volume 0.4 m^3 , containing oxygen gas at a pressure of $1 \times 10^5 \text{ Pa}$ is released from the ground when the temperature is $17^{\circ}\text{C.Volume}$ of a gas changes to 0.53 m^3 and pressure becomes $0.5 \times 10^5 \text{ Pa}$. Calculate its new temperature.
- **8.** Describe an experiment that you would carry out to investigate the relationship between volume and temperature of a fixed mass of dry air at constant pressure.
- **9.** A measuring mass of a gas is placed in a cylinder at atmospheric pressure as shown in **Figure 6.13.**

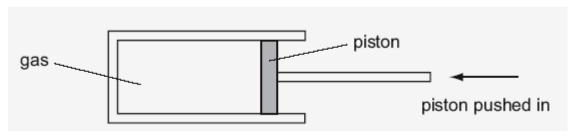


Figure 6.13

Explain what happens to volume and pressure when the gas is compressed. In each case give a reason to your answer.

- **10.** Driving a car raises the temperature of the tyres. What effect will this have on the pressure of the air in the tyres? Give a reason for your answer.
- **11.** 2 *l* of a gas exerts 5 atm of pressure. Calculate the pressure exerted by the same gas at constant temperature when its volume is 5 *l*.
- **12.** Explain **two** applications of gas laws.
- **13.** A gas syringe contains 70 cm³ of oxygen gas at 25°C. If the temperature was increased to 50°C, calculate the new volume of the gas, assuming constant pressure throughout.
- **14.** A gas syringe contains 100 cm³ of air at a pressure of 6 atmospheres. If the pressure was decreased to 3 atmospheres, calculate the new volume of the gas, assuming constant temperature throughout.
- **15.** The volume of a gas at 30° C and pressure 1×10^{5} Pa was 50 m³. Calculate the volume at 0° C and pressure 2.5×10^{5} Pa.

- 16. With the aid of well labeled diagrams, explain how a manometer could be used to measure lung pressure.
- 17. Figure 6.14 is a diagram of an instrument used to measure gas pressure.

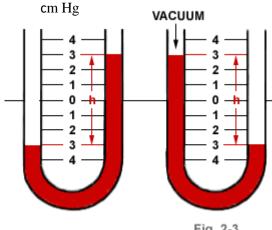


Fig. 2-3

Figure 6.14

- **a.** Name the instrument.
- **b.** Read the pressure difference in mmHg.
- **c.** Calculate the pressure of the gas supply if the atmospheric pressure is 750 mm Hg.

CHAPTER 7

Scalar and Vector quantities

Objectives

At the end of chapter 7, you must be able to:

- Define scalar and vector quantities
- Represent vectors
- Add and subtract vectors
- Resolve vectors

7.1 Scalar and vector quantities

Physical quantities can be analysed by dividing them into scalar quantities and vector quantities.

Scalar quantities

Scalar quantities are quantities that give the magnitude (size or numerical value) only. **For example**, these could be distance, mass, length, height and temperature.

Addition and subtraction of scalar quantities

Scalar quantities are added or subtracted algebraically since they have no effect on direction.

Worked examples

1. 10 metres of cloth plus 5 metres of cloth

Solution

```
Total length of cloth = 10 \text{ m} + 5 \text{ m}
Total length of cloth = 15 \text{ m}
```

2. 100 kg of salt minus 50 kg of salt

Solution

Total mass of salt =
$$100 \text{ kg} - 50 \text{ kg}$$

Total mass = 50 kg

Vector quantities

Vector quantities are quantities that have both magnitude and direction. **For example,** force, displacement, velocity and acceleration.

Exercise 7.1

In your groups, answer the following questions:

- 1. Categorise each quantity as being either a vector quantity or a scalar quantity. 10 km, 10 m/s, 15 minutes, 100°C , 256 bytes, 80 N, 18 years old, 10 m towards north, 10 km/h eastwards and 10 m/s^2 .
- **2.** Complete the table below to identify the physical quantities as scalars or vectors.

Physical quantity	Scalar or vector
Area	
Speed	
Acceleration	
Velocity	
Temperature	
Kinetic energy	
Force	

Distance and displacement

Why is distance a scalar quantity while displacement is a vector quantity?

Distance and displacement are two quantities that may seem to mean the same thing yet have distinctly different definitions and meanings.

Distance refers to how much ground an object has covered during the motion.

For example: 10 m. Therefore, distance is a scalar quantity because it has magnitude (size) only.

Displacement refers to how far and out of place an object is. It is an object's overall change in position. For example: 10 m eastwards. Therefore, displacement is a vector quantity because it has both magnitude and direction.

Worked example

Cecilia walked 10 m due west, 4 m due north, 10 m due east then 4 m due south as shown in **Figure7.1.**

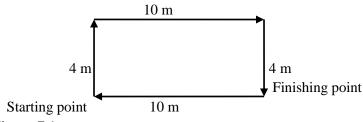


Figure 7.1

Calculate

- **a.** the distance she covered.
- **b.** the displacement during her journey.

Solutions

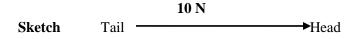
- **a.** the distance she covered = 10 m + 4 m + 10 m + 4 m = 28 m.
- **b.** Total displacement = 4 m + 10 m 4 m 10 m 0 mTotal displacement = $\mathbf{0} \mathbf{m}$

(Displacement is 0 m because 10 m west is cancelled with 10 m east and 4 m north is cancelled with 4 m south. She will go back to the same starting point. Therefore, there is no displacement).

7.2 Representation of a vector quantity

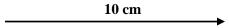
The magnitude of a vector quantity is represented by a straight line while the direction is represented by an arrow.

For example, a force of 10N can be represented as



Scale diagram

Using a scale of 1 cm to represent 1N, we can draw a line of length 10 cm.



The vector quantity can also be represented as follows:

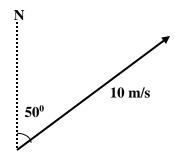


Figure 7.2

From **Figure 7.2** above:

- The magnitude of a vector is 10 m/s
- The direction of the vector is at an angle of 50^0 from north line.

Exercise 7.2 In your groups, draw the following vectors to scale: 1. 6 N 2. 4200 N 3. 100 N 4. 1200 N 5. Velocity of 100 m/s at an angle of 60° to the east of the north line.

7.3 Addition and subtraction of vectors

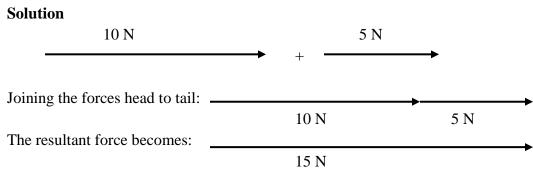
When adding or subtracting vectors, the final vector is called the **Resultant Vector**.

Addition and subtraction of in-line vectors (e.g. forces)

If two forces act in the same direction, their combined effect or resultant force is obtained by joining forces head to tail.

Worked example

To find the resultant force when a 10 N and a 5 N forces are acting in the same direction.



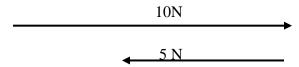
Therefore, the resultant force = 15 N to the right

If forces are in opposite directions, the resultant force is obtained by subtracting the smaller force from the larger force.

Worked example

To find the resultant force when the forces stated above act in opposite directions.

Solution



The resultant force = 10 N - 5 N

The resultant force = 5 N in the direction of 10 N force (to the right).

Vectors at an angle to each other

Vectors can act at an angle to each other. When vectors are acting at an angle to each other, the resultant vector is the final vector. The resultant vector can be found by using either triangle rule or parallel rule.

1. Triangle of forces rule

Triangle method of resolving forces is made by considering forces that act at the same point and on the same plane.

Worked examples

1. Find the resultant of two forces when 5N and 10 N act at right angle to each other.

Solution

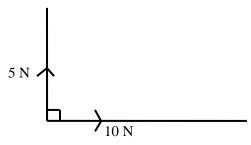


Figure 7.3

Join the forces head to tail

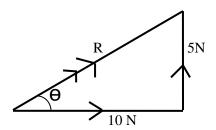


Figure 7.4

The resultant is the line that completes the triangle and the direction is represented by angle θ towards the direction of a greater force (10 N).

Calculation

Using Pythagoras' theorem

$$R^2 = 10^2 + 5^2$$

$$R^2 = 100 + 25$$

$$R^2 = 125$$

 $R = \sqrt{125}$
 $R = 11.18N$

The resultant force is 11.18 N to the 10 N force at an angle Θ .

To find angle θ , use tangent

$$Tan \Theta = \underline{opp} = \underline{5 N}$$
 $Adj 10 N$

Tan
$$\Theta = 0.5$$

Angle
$$\Theta = \tan^{-1} 0.5$$

Angle $\theta = 26.6^{\circ}$

The Resultant force is 11.18N at an angle of 26.6° to the horizontal ground in the direction of a 10 N force.

Drawing a scale diagram

Using a scale of 1cm = 1N

$$10 \text{ N} = 10 \text{ cm}, \quad 5 \text{ N} = 5 \text{ cm}$$

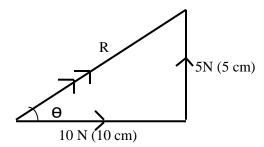


Figure 7.5

Measuring R with a ruler.

R = 11.2 cm

Resultant force = $11.2 \times 1N$ Resultant force = $11.2 \times 1N$

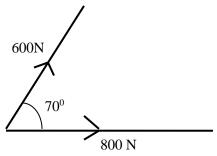
Measure angle Θ using a protractor

Angle $\Theta = 26.5^{\circ}$

The Resultant force is 11.2 N at an angle of 26.5° to the horizontal ground in the direction of a 10 N force.

2. Two forces of 800 N and 600 N act on an object at an angle of 70° , find the resultant force.

Solution



Join the forces head Figure 7.6

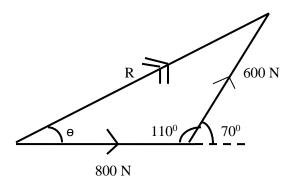


Figure 7.7

Calculation

To find R using cosine Rule

 $R^2 = 600^2 + 800^2 - 2 \times 600 \times 800 \times \cos 110^0$

 $R^2 = 360\ 000 + 640\ 000 - (-328\ 339.3376)$

 $R^2 = 1\ 000\ 000 + 328\ 339.3376$

 $R^2 = 1 328 339.338$

 $R = \sqrt{1} \ 328 \ 339.338$

R = 1 152.5 N

Resultant force is 1 152.5 N to the 800 N force at an angle $\boldsymbol{\Theta}$

To find angle Θ

Using sine Rule

$$\frac{\sin \Theta}{600} = \frac{\sin 110^0}{1152.5}$$

$$\sin \Theta = \frac{600 \text{ X } \sin 110^0}{1 \text{ 152.5}}$$

 $\sin \theta = 0.4892$

Angle $\theta = \sin^{-1} 0.4892$

Angle $\Theta = 29.3^{\circ}$

Resultant force is 1 152.5N at 29.3° to the horizontal ground in the direction of 800 N force.

Drawing a scale diagram

Using a scale of 1 cm = 100 N

600 N = 6 cm

800 N = 8cm

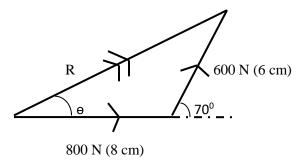


Figure 7.8

Measure the length of R using a ruler

R = 11.53 cm

Resultant force = 11.53 X 100 N

Resultant force = 1153 N

Measure angle e using a protractor

Angle $\theta = 29.2^{\circ}$

Therefore, Resultant force is $1153\ N$ at an angle of 29.2^0 to the horizontal ground towards $800\ N$ force.

2. Parallelogram method

Parallelogram method is used to find the resultant of two forces acting at a given point. In a parallelogram rule, the forces complete the parallelogram. The resultant force is represented by a diagonal of the parallelogram. The angle between the diagonal and a horizontal force gives the direction of the resultant force.

Worked examples

1. Two forces of 6 N and 8 N are acting at an angle of 30⁰. Find the resultant force by calculation and drawing a scale diagram.

Solution

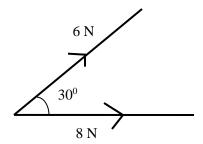


Figure 7.8

Draw in two more lines to complete the parallelogram. Then draw a diagonal line, and calculate its length.

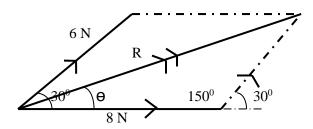


Figure 7.9

The diagonal represents the resultant of the two forces.

Calculation

To find R, using cosine rule

$$R^{2} = 6^{2} + 8^{2} - 2 \times 6 \times 8 \times \cos 150^{0}$$

$$R^{2} = 36 + 64 - (-83.1384)$$

$$R^2 = 100 + 83.1384$$

$$R^2 = 183.1384$$

$$R = 183.1384$$

$$R = 13.5N$$

Resultant force is 13.5N to the 8N force at an angle θ .

To find θ, using sine rule

$$\frac{\sin \Theta}{6} = \frac{\sin 150^0}{13.5}$$

$$\sin \Theta = \frac{\sin 150^0 \times 6}{13.5}$$

$$\sin \Theta = 0.2222$$

Angle
$$\Theta = 12.8^{\circ}$$

Resultant force is 13.5 N at 12.80 to the horizontal ground in the direction of 8 N force.

Drawing a scale diagram

Using a scale of 1 cm = 1 N

$$6 \text{ N} = 6 \text{ cm}$$

$$8 \text{ N} = 8 \text{ cm}$$

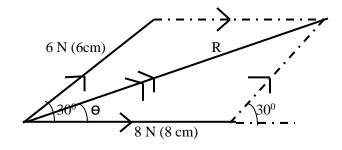


Figure 7.10

Measure the length of R using a ruler

R = 13.5 cm

Resultant force = $13.5 \times 1 \text{ N}$

Resultant force = 13.5 N

Measure angle e using a protractor

Angle
$$\theta = 12.8^{\circ}$$

Therefore, Resultant force is 13.5 N at an angle of 12.8° to the horizontal ground towards 8N force.

3. James walks 5 km due north then 7 km due east. Draw a scale diagram to find the resultant of his displacement.

Solution

Scale: 1 cm to represent 1 km

5 km = 5 cm

7 km = 7 cm

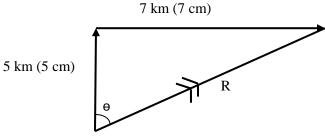


Figure 7.11

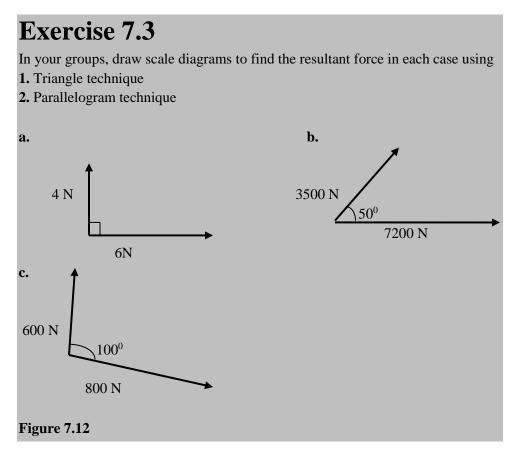
The length of R = 8.6 cm

Resultant displacement = $8.6 \times 1 \text{km}$

Resultant displacement = 8.6 km

Angle $\theta = 54.5^{\circ}$

Therefore, resultant displacement is **8.6 km** at an angle of **54.5**⁰ from the north line.



Resolving components of vectors

Previously, two forces acting at a point were used to find a single force called **resultant force**. In this section we are going to look into the reverse of that process. In reversing the process, a single force called resultant force can be replaced by two forces having the same effect.

Therefore, a force is said to be resolved. A force can be resolved into two components namely:

- vertical component
- horizontal component

These components of forces are perpendicular (at a 90° angle) to each other.

The vector sum of these two components is equal to the original force in magnitude and direction. These two forces must also pass through the same point of application as the original force.

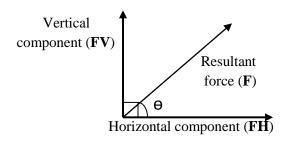


Figure 7.13 components at right angle.

To calculate the values of forces acting at right angles as shown in **Figure 7.13**:

The vertical component = Resultant force x sine Θ

$$FV = F Sin \Theta$$

The horizontal component = Resultant force x cosine Θ

$$FH = F \cos \Theta$$

Worked example

Khataza pulls Tegha sitting in a trolley by using a string. The tension of the string is 100 N inclined at 60° to the horizontal. Calculate:

- **a.** the horizontal force pulling Tegha in the trolley.
- **b.** the vertical force tending to lift the trolley.

Solution

Since we know that tension is 100 N. This force is the resultant F. The sketch can be drawn as shown in **Figure 7.14.**

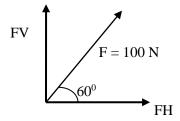


Figure 7.14

a. horizontal force
$$FH = F \cos \Theta$$

 $FH = 100 \text{ N x } \cos 60^{\circ}$

FH = 50 N

b. Vertical force FV = F sin Θ FV = 100 N x sin60° FV = **86.6 N**

Exercise7. 4

In your groups, answer the following questions:

- **1.** Draw a scale diagram of a 50 N force at 60⁰ to the horizontal and show that its vertical and horizontal components are 43.3 N and 25.0 N respectively.
- **2.** Resolve a 20 N force acting at an angle $\alpha = 30^{0}$ to the horizontal into
- a. vertical component
- **b.** horizontal component

Summary

A scalar quantity is a quantity which has magnitude (size) only.

A vector quantity is a quantity which has magnitude (size) and direction.

Distance is a scalar quantity because it has magnitude only while displacement is a vector quantity because it has both magnitude and direction.

Vector quantities are represented by vector diagrams.

The resultant vector is the vector which is found after adding or subtracting vectors.

In-line vectors are added when acting in the same direction and subtracted when acting in opposite directions.

The resultant vector for vectors that are acting at an angle to each other is found using either triangle rule or parallelogram rule.

Student assessment

- **1.** Define the following:
 - a. Resultant vector
 - **b.** Component of a force

- 2. Explain the difference between
 - **a.** Scalar quantity and vector quantity.
 - **b.** Distance and displacement.
- **3.** Explain why speed is a scalar quantity while velocity is a vector quantity.
- **4.** Show if the following are scalar or vector quantities:

Quantity	Scalar or vector
Temperature	
Deceleration	
Density	
Velocity	
Mass	
Speed	

Table 7.1

- **5.** James travels 200 m north, then turns and travels 80 m east.
 - **a.** Draw a scale diagram representing this trip.
 - **b.** Determine what his actual displacement is.
- 6. A 15 N force and a 6 N force act in line. Draw scale diagrams to find the resultant force if
 - **a.** they act in the same direction.
 - **b.** they act in opposite directions.
- **7.** A 3 N force and a 5 N force act at an angle of 60⁰ to each other. Calculate the resultant force.
- **8. Figure 7.15** shows two forces acting at a right angle.

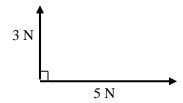


Figure 7.15

Draw a scale diagram to determine the resultant force, by using:

a. triangle rule.

- **b.** parallelogram rule.
- **9.** Calculate the resultant force produced by forces of 7 N and 3 N acting on a point object, if the lines of action of the forces are:
- **a.** at a right angle to one another.
- **b.** at 80° to one another.
- **10.** A 20N and a 50N force both act at the same point.
- **a.** If two forces act at a right angle to each other, find by scale drawing the size and direction of their resultant force. (Scale; 1cm: 5N).
- **b.** If two forces act at 60° to each other, draw a scale diagram using parallelogram technique to find the size and direction of the resultant force.
- 11. Linda walks 50 m north, 20 m east, 50 m south then 20 m east.

Calculate:

- **a.** the distance she covered.
- **b.** her displacement.
- **12.** Draw a scale diagram showing a displacement of 360 N at 50⁰ from the north line eastwards.
- **13.** Tikondane pushes a box as shown in **Figure 7.16.**

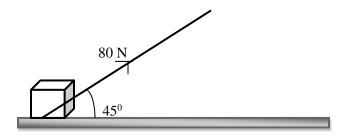


Figure 7.16

- a. By calculation, find:
 - **i.** the vertical component
 - ii. the horizontal component.
- **b.** By drawing a scale diagram, find
 - i. the vertical component of a force
 - ii. the horizontal component of a force.

14. Figure 7.17 shows a 30 N force acting to the horizontal.

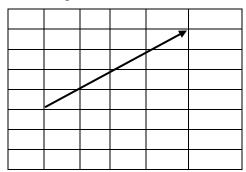


Figure 7.17

- **a.** Complete the vertical and horizontal components.
- **b.** Calculate:
 - i. the vertical component of a force.
 - ii. the horizontal component of a force.

CHAPTER 8

Linear motion

Objectives

At the end of chapter 8, you must be able to:

- Describe distance, displacement, speed, velocity and acceleration
- Conduct experiments to determine velocity and acceleration
- Determine acceleration due to gravity
- Explain motion-time graphs
- Apply equations of uniformly accelerated motion

8.1 Distance, displacement, speed, velocity and acceleration

Distance and displacement

Distance

Distance refers to how much ground an object has covered during the motion. Distance is a scalar quantity because it has magnitude only.

For example: 10 km.

Displacement

Displacement is the distance moved in a particular direction. Displacement is a vector quantity because it has both magnitude and direction.

For example: It is a displacement of 20 km due west.

Speed

A car can go fast or slow. When a car goes fast it means its speed is high and when it goes slow it means its speed is low. In each case, to describe speed we use distance covered and time taken to cover that distance.

So, **speed** is defined as the distance covered per unit time. You can also define speed as the rate of change in distance.

A speed of 1m/s is realised when a distance of 1m is covered in 1 second.

$$S = \frac{D}{T}$$

Whereby **D** is distance in metres (m), **T** is time in seconds (s) and **S** is speed in metres per second (m/s).

Therefore, the SI unit for speed is m/s.

If distance \mathbf{D} is in kilometers (km) and time \mathbf{T} is in hours (hrs), then speed \mathbf{S} is given in kilometers/hour (km/hr).

Speed is a scalar quantity since it has magnitude only.

Worked example

An athlete covered a distance of 20 km in 5hours. Calculate the speed of the athlete.

Solution

To find the speed of the athlete, use the covered distance and time taken for that distance to be covered.

Distance = 20 km, t = 4 hours

Speed = <u>distance moved</u>

Time taken

Speed = $\frac{20 \text{km}}{4 \text{hrs}}$

Speed = 5 km/hr

Experiment 8.1

AIM: To find the speed of a moving object

MATERIALS: Chalk, stop watch, trolley tape measure

PROCEDURE:

- 1. Find a smooth and flat area around your school.
- **2.** Measure a distance of 5 m with a tape measure then mark the starting and finishing points with chalk.
- **3.** One observer must be on the starting line with a stop watch and a trolley while the other observer must be on the finishing line.
- **4.** The observer on the starting line must push the trolley and start the stopwatch immediately.
- **5.** As the trolley crosses the finishing line, a second observer must raise his/her hand so stopwatch is stopped immediately.
- **6.** Use the formula to find the speed of a trolley:

Speed = $\frac{\text{distance (5 m)}}{\text{Triangle}}$

Time taken

Average Speed

When an athlete was running at different speeds or his speed was varying, his average speed can be worked out as follows:

Average speed = $\underline{\text{Total distance covered}}$

Total time taken

Worked examples

1. A cyclist covers the first 90 km of the distance traveling at 30 km/hr then he covers the next 80 km traveling at 40 km/hr. Calculate the average speed of the cyclist.

Solution

The first part of the journey

$$D = 90 \text{ km}$$

$$S = 30 \text{ km/hr}$$

$$T = \underline{D}$$

$$T = \underline{90 \text{ km}}$$

30 km/hr

$$T = 3hrs$$

Second part of the journey

$$D = 80 \text{km}$$

$$S = 40 \text{km/hr}$$

$$T = 80km / 40km/hr$$

$$T = 2hrs$$

$$Average \ speed = \underline{Total \ distance \ covered}$$

Total time taken

Average speed =
$$\frac{90 \text{ km} + 80 \text{ km}}{3 \text{ hrs} + 2 \text{ hrs}}$$

Average speed =
$$\frac{170 \text{ km}}{5 \text{ hrs}}$$

Average speed = 34 km/hr

2. A car starts at a speed of 0 m/s until it reaches a speed of 10 m/s. Find the average speed of the car.

In this case the average speed = $\underline{\text{sum of the speeds}}$

Number of speeds
=
$$\frac{0 \text{ m/s} + 10 \text{ m/s}}{2}$$

$$= \frac{10 \text{ m/s}}{2}$$

Average speed = 5 m/s

Experiment 8.2

AIM: To find the average speed of an athlete

MATERIALS: Tape measure, stop watch and whistle.

PROCEDURE:

- **1.** Measure a distance of 20 m with a tape measure and mark the starting and finishing points.
- **2.** An athlete must stand on the starting point.
- **3.** An observer must have a stop watch and a whistle.
- **4.** The athlete must start running as soon as the observer blows the whistle and starts the stop watch.
- **5.** The athlete can cover the same distance three times then the observer stops the stop watch
- **6.** Record the total distance covered as 20 m x 3 = 60 m.
- **7.** Record the total time taken.
- **8.** Calculate the average speed of the 1 athlete as follows:

Average speed = $\underline{\text{Total distance (60 m)}}$

Total time taken

Velocity

Velocity is the distance covered in a stated direction (displacement) per unit time.

Therefore, velocity is the speed in stated direction. Velocity, like speed, is measured in m/s.

Velocity is the vector quantity because it has magnitude and direction of travel.

Velocity is the distance covered in a stated direction per unit time or displacement per unit time.

Velocity = <u>Distance covered in a stated direction (displacement)</u> Time taken

Worked example

A car travels 300 m in 20 s. What is its velocity?

Solution

Velocity = <u>Distance covered in a stated direction</u>

Time taken

Velocity = $\frac{300 \text{ m}}{20 \text{ s}}$

Velocity = 15 m/s

Acceleration

An object accelerates when its velocity changes.

Acceleration is the rate of change of velocity per unit time. Acceleration can also be defined as the change in velocity per given time.

Let the initial velocity be **u**The final velocity be **v**Time to be **t**

Change in velocity becomes = final velocity (v) – initial velocity (u)

The acceleration becomes:

$$a = \underline{v - u}$$

When v is greater than u, an object speeds up. Speeding up is called acceleration.

When v is less than u, an object slows down. Slowing down is called **deceleration**.

When \mathbf{v} is equal to \mathbf{u} , an object has zero acceleration (travels with a constant velocity) because there is no change in velocity.

Acceleration, like velocity is a vector quantity.

Worked examples

1. A motor cycle starts from rest (0 m/s) and reaches a velocity of 10 m/s in 5 seconds. Calculate the acceleration of the motor cycle.

Solution

$$u = 0 \text{ m/s} \quad v = 10 \text{ m/s} \quad t = 5 \text{ s}$$

$$a = \underline{v - u}$$

$$t$$

$$a = \underline{10 \text{ m/s} - 0 \text{ m/s}}$$

$$5 \text{ s}$$

$$a = \underline{0 \text{ m/s}}$$

$$5 \text{ s}$$

 $a = 2 \text{ m/s/s or } 2 \text{ m/s}^2 \text{ or } 2 \text{ ms}^{-2}$

Acceleration of a motorcycle is 2 m/s²

2. An aeroplane wants to land. Its velocity drops from 20 m/s until it reached 5 m/s in 10 seconds. Calculate the average acceleration of the aeroplane.

Solution

$$u = 20 \text{ m/s}$$
 $v = 5 \text{ m/s}$ $t = 10 \text{ s}$

$$a = \frac{v - u}{t}$$

$$a = \frac{5 \text{ m/s} - 20 \text{ m/s}}{10 \text{ s}}$$

$$a = -\frac{15 \text{ m/s}}{10 \text{ s}}$$

$$a = -1.5 \text{ m/s}^2$$

NOTE the negative sign means that the acceleration is in the opposite direction to the chosen direction of the velocity. The negative acceleration is called **Deceleration** or **Retardation**.

Therefore, in the above example,

Deceleration = - acceleration

Therefore, Deceleration = 1.5 m/s^2

Experiment 8.3

AIM: To determine velocity and acceleration of an object

MATERIALS: chalk, stopwatch, trolley, tape measure

PROCEDURE:

1. Find a smooth and flat area around your school.

- 2. Measure distances of 2 m, 5 m and 9 m with a tape measure then mark these points including the starting point on 0 m and finishing point on 9 m with chalk.
- **3.** Four observers must be on the starting line (0 m), 2 m, 5 m and 9 m with stop watches.
- **4.** The observer on the starting line must push the trolley and start the stopwatch immediately.
- **5.** Each observer must start the stopwatch as the trolley crosses each point.
- **6.** Use your results to complete the **Table 8.1**.

Section (m)	Time at start(s)	Time interval(s)	Length of section (m)	Velocity (m/s)
0-2			2	
2-5			3	
5-9			4	

Table 8.1

7. Use the results in **Table 8.1** to calculate the velocity of a trolley using a formula

velocity = <u>displacement (length of a section)</u>

time interval

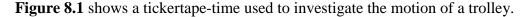
- **8.** Plot a graph of velocity against time
- **9.** Calculate the acceleration of the trolley for each section by using the gradient of the velocity time graph.

Gradient = change in velocity

Change in time

Determing the velocity and acceleration of an object by using a tickertape-timer

The tickertape-timer marks dots on a tape at regular intervals of 1/50 s(0.02s). This is taken from the frequency of alternating mains electricity because a ticker-time uses alternating current. In this case the frequency is 50 Hz (50 cycles per second).



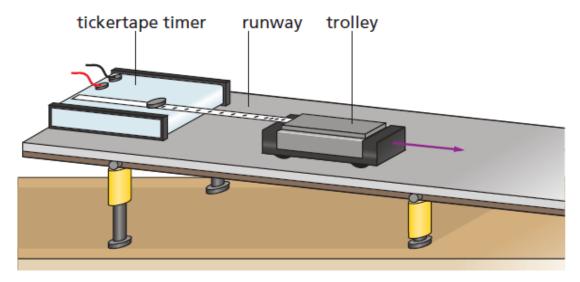


Figure 8.1 tickertape timer

When a trolley is connected to the tape and set in motion, the dots will be created on the tape. The pattern of dots acts as a record of the trolley's movement. The time interval between adjacent dots is 1/50 s (0.02 s).

Even spacing on the tape: constant velocity Increasing spacing: increasing velocity

The distance from the start to the fifth dot is covered at an interval of 1/10 s (0.1 s). This will be considered as the section which represents the trolley's displacement.

Measure and record the distance (displacement) of every fifth dot from the start of the tape. The velocity of a trolley for the first section can be calculated by using a formula:

Velocity = $\frac{\text{displacement (length of the section)}}{\text{Time interval (0.10 s)}}$

Repeat the measurement and calculation for the other two sections.

Now we can record the values in the **Table 8.2** for the three sections.

Section of a	Time at start (s)	Time interval(s)	Displacement(cm)	Velocity (m/s)
tape				
1	0.0	0.1	4.0	0.40
2	0.1	0.1	8.0	0.80
3	0.2	0.1	12.0	1.2

Table 8.2 An example of the graph obtained using a tickertape-timer

NOTE: The displacements must be converted to metres first.

Use the results in the **Table 8.2** to plot a velocity-time graph.

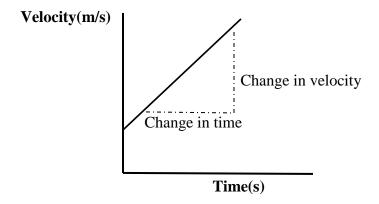


Figure 8.2 graph of velocity against time

We can calculate the acceleration of a trolley by calculating the gradient of the graph.

Exercise 8.1

Individually, answer the following questions:

- **1.** Explain why speed is a scalar quantity and velocity is a vector quantity.
- 2. A body moves a distance of 10 m in 5 s. Calculate the speed of the body in
 - a. m/s
 - b. km/h
- **3.** A bicycle rider accelerates from rest to a velocity of 30 m/s in 10 s. Calculate the acceleration of the rider.
- **4.** An athlete changes her speeds uniformly from 30 m/s to 20 m/s in 5 s. Calculate her retardation.
- **5. a.** Plot a velocity time graph using the values in **Table 8.2**.
 - **b.** Calculate the acceleration of the trolley

8.2 Acceleration due to gravity

All the objects that are near the earth surface fall freely. They do not experience any air resistance. They fall under the force of gravity and they fall with uniform acceleration. This acceleration is called the **acceleration due to gravity**. The acceleration due to gravity is also called the **acceleration of free fall**.

Free fall is the falling of an object with uniform acceleration under the force of gravity if air resistance is negligible.

Acceleration due to gravity is denoted a letter \mathbf{g} . The value of acceleration due to gravity is approximately $\mathbf{10}$ m/s². This value varies slightly from one place to another on the earth's surface. This is because the gravitational pull of the earth on an object also varies. The variation of acceleration due to gravity is less than 1%.

Experiment 8.4

AIM: To measure acceleration due to gravity, g

MATERIALS: Stop watch, bob, metre ruler, clamp stand, retort stand and string.

PROCEDURE:

1. Set up an experiment as shown in Figure 8.3.

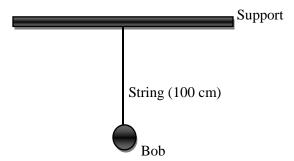


Figure 8.3

- 2. Pull the bob 5 cm to one side and release it so that it swings in one plane.
- **3.** As the bob passes from left to right across your centre line begin to count 3, 2, 1, 0. Start the stop watch as you count 0.
- **4.** Record the time taken for 50 oscillations.
- **5.** Repeat the experiment for the length 80, 60, 40 and 20 cm long.
- **6.** In each case the timing must be repeated as a check on the previous reading and the results can be recorded in **Table 8.2.**

Length l	Time for 50 oscillations		Periodic	T^2	$\underline{\mathbf{T^2}}$	
(cm)	1	2	mean	time T (s)		l
100						
80						
60						
40						
20						

Table 8.2

7. Plot a graph of T^2 (y-axis) against 1 (x-axis) and measure its slope.

RESULTS/EXPLANATION

From the graph of T^2 against l, a straight line through the origin should be obtained. The gradient of the line gives a value of g.

The value of g can also be calculated from the results obtained as follows:

The value of g each also see
$$\frac{T^2}{l} = \frac{4\pi^2}{g}$$
Therefore, $g = 4\pi^2 \div \frac{T^2}{l}$

8.3 Graphical representation of motion

It is very difficult to be precise in describing the motion of the objects in motion. Therefore, graphs are used in science to assist our understanding and description of objects in motion. Graphs are a convenient and accurate means of displaying information. Graphs can be plotted as follows:

- displacement (distance) against time
- velocity (speed) against time

Distance-Time Graph

In a distance–time graph, distance or displacement (in the y–axis) is plotted against time (in the x–axis).

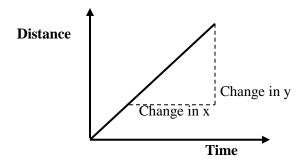


Figure 8.4 distance-time graphs.

The gradient of a distance-time graph = $\frac{\text{change in y (distance)}}{\text{change in x (time)}}$

Therefore, the gradient of a distance—time graph gives speed. If the graph is plotted, displacement against time, its gradient gives velocity.

Interpreting the distance (displacement)-time graphs

The motion of the object under the distance –time graph can be described as follows:

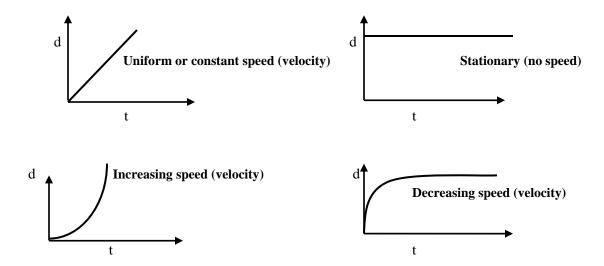


Figure 8.5 distance (displacement) – time graphs

Worked example

The graph in **Figure 8.6** below represents the distance covered by Wadada express bus during the first 6 hours of its motion. Use it to answer the questions that follow.

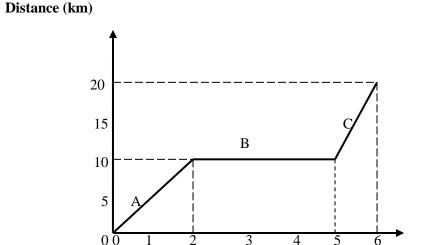


Figure 8.6

1. Describe the motion of the bus at parts A, B and C.

Time (hrs)

- **2.** Determine the speed of the bus during the first 2 hours.
- **3.** Calculate the average speed of the bus.

Solutions

1. Motion of the bus:

Part A: the bus is travelling at uniform or constant speed

Part B: the bus is stationary

Part C: the bus is travelling at uniform or constant speed

2. Speed = $\underline{\text{Distance covered}}$

Time taken

Speed = $\underline{10 \text{ km}}$

2 hrs

Speed = 5 km/hr

3. Average speed = $\underline{\text{Total distance}}$

Total time taken

= $\underline{20 \text{ km}}$

6 hrs

Average speed = 3.3 km/hr

Velocity (speed)-time graph

In velocity–time graph velocity (in the y-axis) is plotted against time (in the x-axis).

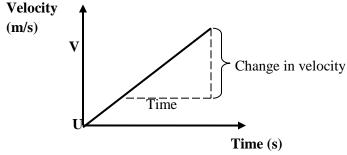


Figure 8.7 Velocity—time graph

$$Gradient = \underline{change \ in \ velocity}$$

$$\underline{Time}$$

$$\underline{Change \ in \ velocity} = acceleration$$

$$\underline{Time}$$

Therefore, a velocity–time graph gives acceleration.

Acceleration from the graph can also be found by using a formula:

$$\mathbf{a} = \mathbf{V} - \mathbf{U}$$

Describing the motion on a velocity – time graph

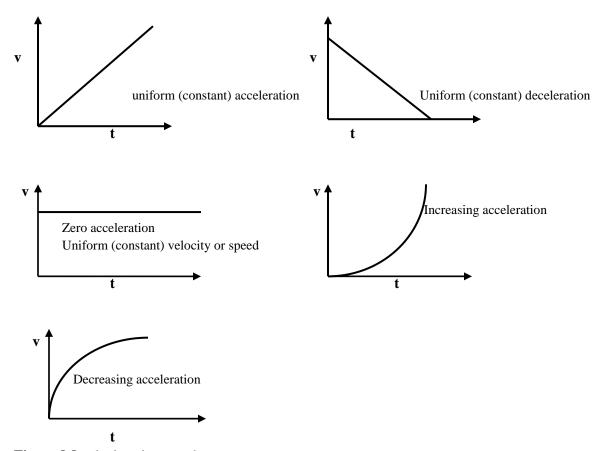


Figure 8.8 velocity- time graphs

Distance under Velocity (Speed)-Time Graph

Distance = Area under velocity—time graph

Worked examples

1. Use a speed-time in **Figure 8.9** to find the total distance traveled by an object from A to D

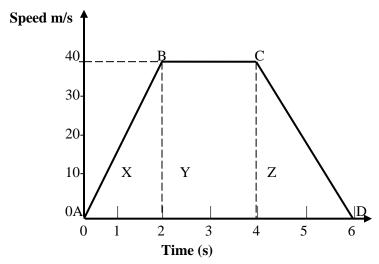


Figure 8.9

Solution

Total distance =Area of
$$\triangle$$
 X + Area of rectangle Y + Area of \triangle Z
= (½ x b x h) + (1 x w) + (½ b x h)
= (½ x 2 s x 40 m/s) + (40 m/s x 2 s) + (½ x 2 s x 40 m/s)
= 40 m + 80 m + 40 m

The total distance covered by an object = 160m.

Total distance can also be worked out as follows:

Total distance = Area of a trapezium
=
$$\frac{1}{2}(a + b) h$$

= $\frac{1}{2}(2 + 6) \times 40$
= $\frac{1}{2} \times 8 \times 40$

Total distance = 160 m

2. Figure 8.10 is a speed – time graph for a cyclist. Use it to answer the questions that follow.

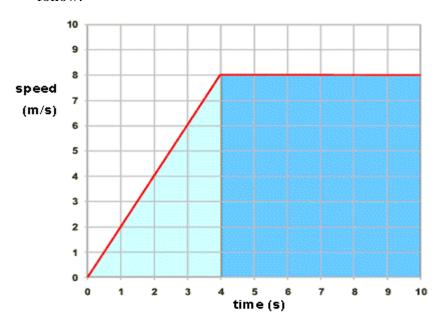


Figure 8.10

- **a.** Describe the motion of the cyclist during the entire 10 seconds.
- **b.** Calculate the acceleration of the cyclist during the first 4 seconds.
- $\boldsymbol{c}_{\boldsymbol{\cdot}}$ Calculate the total distance covered during the entire 10 seconds.
- **d.** Calculate the average speed of a cyclist during the entire 10 seconds.

Solution

- **a.** The motion of a cyclist
 - 0-4 s = the cyclist accelerates uniformly
 - 4-10 s = the cyclist had zero acceleration or the cyclist had a uniform speed
- **b.** Acceleration during the first 4 seconds
 - $a = \underline{Change \ in \ speed}$

time taken

$$a = V - U$$

$$U = 0 \text{ m/s}$$

$$V = 8 \text{ m/s}$$

$$t = 4 \text{ s}$$

$$a = \frac{8 \text{ m/s} - 0 \text{ m/s}}{2 \text{s}}$$

$$= \frac{8 \text{ m/s}}{4 \text{ s}}$$

Acceleration = 2 m/s^2

c. Total distance = Area of a trapezium.

$$= \frac{1}{2} (a + b) h$$

= \frac{1}{2} (6 + 10) x 8
= \frac{1}{2} x 16 x 8

Total distance = 64 m

d. Average speed = $\underline{\text{total distance}}$

total time $= \underline{64 \text{ m}}$

10 s

Average speed = 6.4 m/s

- 3. A body starts from rest and accelerates at 10 m/s^2 for 5 s. It then continues at this speed for 5 s before decelerating to rest in 10 s.
- **a.** Sketch a speed time graph of this motion.
- **b.** Calculate the distance the object moved in the first 5 seconds.

Solution

a. Sketch of a speed time graph

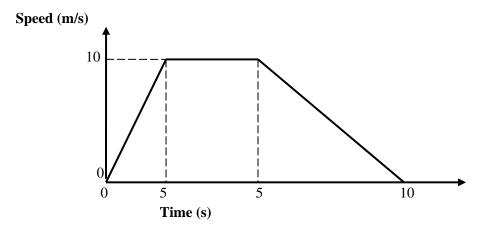


Figure 8.11

b. Distance moved in 5 seconds = Area of a triangle

 $= \frac{1}{2} \times b \times h$

 $= \frac{1}{2} \times 5 \times 10$

Distance = 25 m

Exercise 8.2

Individual work:

A trolley is pushed uniformly for 5 seconds from a velocity of 0 m per second to a velocity of 40 m per second, it continues at this steady velocity of 40 m per second for a further 30 seconds and then decelerates uniformly for 10 seconds so that it stops.

- 1. Draw to scale a velocity—time graph to represent the motion of the trolley. (Scale1cm = 5 m/s and 1cm = 5 s).
- 2. From your graph, calculate:
- **a.** Total time taken for the journey.
- **b.** Acceleration during the first 5 seconds,
- c. Distance covered during the first 35 seconds
- **d.** Deceleration during the last 10 seconds.

8.4 Motions of falling bodies

Three forces acting on a falling body are:

■ Gravitational force or weight (W) – It acts downwards

- Upthrust (U) It is the push by the fluid. It acts upwards.
- Frictional force (Fr) It opposes the motion. It acts upwards.

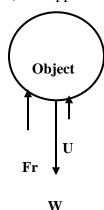


Figure 8.12 forces acting on a falling object

Acceleration of a free fall

In air, a coin falls faster than a feather because they experience different size of air resistance. Air resistance is greater to lighter bodies than to heavy ones. In a vacuum a coin and a feather fall at the same rate because they do not experience any air resistance. The coin and a feather are said to have a free fall.

Experiment 8.5

AIM: To investigate free fall of bodies

MATERIALS: Feather, coin, glass tube, vacuum pump and cork.

PROCEDURE:

1. Set up the experiment as shown in **Figure 8.13** below.

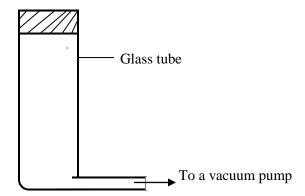


Figure 8.13

2. Drop the feather and a coin in a glass tube. Observe which one will reach the bottom of the tube first.

Give a reason for this result.

- **3.** Connect a vacuum pump and pump out all the air.
- **4.** Drop the feather and a coin from the same height. Observe which one will reach the bottom of the tube first.

Give a reason for this result.

Discuss your results with your friends in class.

RESULT/EXPLANATION

When the feather and a coin are dropped from the same height and at the same time, the coin reaches the bottom of the tube first because it experiences less air resistance since it is heavier than the feather.

Vacuum pump connected:

When the feather and a coin are dropped from the same height at the same time, both the coin and the feather will reach the bottom of the tube at the same time because they do not experience any air resistance. They are falling under a free fall.

Figure 8.14 shows the falling of a coin and a feather in a vacuum and air.

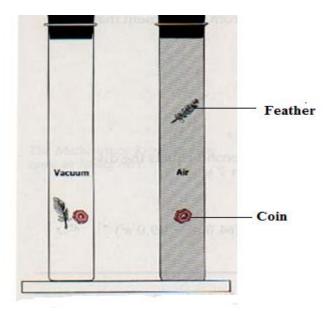


Figure 8.14 falling in a vacuum and air

Falling of heavy objects near the earth

In the 16th century the Italian scientist Galileo dropped a small iron ball and a large ball ten times heavier from the top of the Learning Tower of Pisa. In this story, we were told that, to the surprise of onlookers who expected the cannon ball to arrive first, both objects reached the ground almost at the same time.

From this story, untrue we now think, suggests that the heavy bodies, whatever their sizes, are only slightly affected by air resistance. Therefore, heavy objects near the earth fall under free-fall.

Figure 8.15 Tower of Pisa

Falling in parachutes

Falling when a parachute is not opened

A parachutist falls at a very high speed, because W - (U + Fr) is very great since Fr is taken as negligible.

As a parachutist increases the speed or accelerates frictional force increases until W = (Fr + U). When W = Fr + U, a parachutist falls at a constant or uniform speed called **terminal speed** or **terminal velocity** of 50 m/s.

This terminal velocity without opening a parachute is called **Sky Diving**.

Falling when a parachute is opened

After opening a parachute, frictional force increases which reduces the speed of a parachutist. A parachutist decelerates since Fr has increased.

$$(Fr + U) > W$$

As the speed decreases, it causes Fr to decrease until (Fr + U) = W.

When (Fr + U) = W, a parachutist travels at another terminal speed or terminal velocity of 8 m/s. This is a **landing speed.** Hence a parachutist lands safely on the ground.

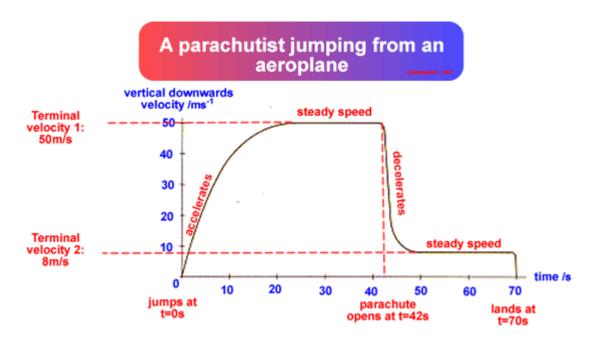


Figure 8.16 graph of a parachutist.

8.5 Equations of uniformly accelerated motion

Calculations involving the displacement, velocity, acceleration and time of motion of a moving body use the equations of motions. These equations are derived from the definitions of acceleration and average velocity.

Equation 1

If a body is moving with uniform acceleration \mathbf{a} and its velocity increases from \mathbf{u} to \mathbf{v} in time \mathbf{t} , the equation is given as;

$$a = \underline{v - u}$$

Making v the subject of the formula, the equation that is obtained is

Equation 2

The velocity of a body moving with uniform acceleration increases steadily. Its average velocity therefore equals half the sum of its initial and final velocities. The equation is given as:

average velocity =
$$\underline{\mathbf{u} + \mathbf{v}}$$

From (1)
$$v = u + at$$

$$average velocity = \underline{u + u + at} = \underline{2u + at}$$

$$2$$

$$= u + \frac{1}{2}at^{2}$$

If s is the distance moved in time, t, then since average velocity = distance / time = s/t

$$\underline{\mathbf{s}} = \mathbf{u} + \frac{1}{2} \operatorname{at}$$
t
$$\mathbf{s} = \mathbf{ut} + \frac{1}{2} \operatorname{at}^{2} \dots (2)$$

Equation 3

The third equation is obtained by eliminating t between the first two equations.

Squaring both sides of the equation, v = u + at, we obtain

$$v^2 = u^2 + 2 uat + a^2t^2$$

Taking out the factor 2a from the last two terms of the right-hand side,

$$v^2 = u^2 + 2a (ut + \frac{1}{2} at^2)$$

But the bracket term is equal to s

Hence

$$v^2 = u^2 + 2as$$
(3)

Worked examples

1. Yusuf rides a bicycle. He starts from rest and accelerates at 2 m/s^2 for 10 seconds. Calculate his maximum speed.

Solution

$$u = 0m/s$$
 $v = ?$ $a = 2m/s^2$ $t = 10 s$ $v = u + at$ $v = 0 + (2 x 10)$ $v = 20 m/s$

- 2. Fatima throws an apple vertically upwards with an initial velocity of 15 m/s. Neglecting air resistance, and taking the acceleration due to gravity as 10 m/s^2 , calculate:
 - **a.** the maximum height reached by the apple
 - **b.** the time taken before the fruit reaches the ground.

Solution

a. u = 15 m/s v = 0 m/s $a = -10 \text{ m/s}^2$ (when an apple is thrown upwards it decelerates) s = ?

$$v^{2} = u^{2} + 2as$$

$$2as = v^{2} - u^{2}$$

$$s = \frac{v^{2} - u^{2}}{2a}$$

$$s = \frac{0^{2} - 15^{2}}{2 \text{ x (-10)}}$$

$$s = \frac{-225}{-20}$$

$$s = 11.25 \text{ m.}$$

b.
$$s = 11.25 \text{ m}$$
 $u = 0 \text{ m/s}$ $a = 10 \text{ m/s}^2$ $t = ?$
 $s = ut + \frac{1}{2} at^2$
 $11.25 = (0 \text{ x t}) + (\frac{1}{2} \text{ x } 10 \text{ x } t^2)$
 $11.25 = 5 t^2$

$$t^2 = \underline{11.25}$$
 5

$$t^2 = 2.25$$

$$t = \sqrt{2.25}$$

$$t = 1.5 \text{ s}$$

Exercise 8.3

Individually, answer the following questions:

- 1. A motorist starts from rest and accelerated uniformly at the rate of 5 m/s 2 for 5 seconds. Calculate
 - a. the final speed reached
 - **b.** the distance covered.
- **2.** A fruit falls from rest from the tree. Ignoring air resistance and take acceleration due to gravity = 10 m/s^2 , calculate
 - **a.** the velocity after 4 s.
 - **b.** the distance covered after 2 seconds.

Summary

Distance and speed are scalar quantities because they have magnitude only while displacement and velocity are vector quantities because they have magnitude and direction.

Speed is defined as distance covered per given time. Velocity is the distance covered in a stated direction (displacement) per given time.

Acceleration is the rate of increase in velocity while deceleration is the rate of decrease in velocity.

$$a = \underline{v - u}$$
$$t$$
$$d = -a$$

All the objects that are near the earth surface fall freely and they fall under the force of gravity called **acceleration due to gravity** or **acceleration of free fall.**

Free fall is the falling of an object with uniform acceleration under the force of gravity if air resistance is negligible.

Gradient of a distance—time graph gives speed or the gradient of a displacement—time graph gives velocity.

Gradient of a speed–time graph or velocity–time graph gives acceleration.

The total distance under a speed (velocity)—time graph is found by calculating the area under the graph.

The equations of uniformly accelerated motion are:

$$v = u + at$$
(1)
 $s = ut + \frac{1}{2}at^{2}$ (2)
 $v^{2} = u^{2} + 2as$ (3)

Student assessment

- **1.** Define the following:
 - a. Speed
 - **b.** Acceleration
 - **c.** Acceleration due to gravity
 - **d.** Free fall
- **2.** Explain why speed is a scale quantity while velocity is a vector quantity.
- **3.** Kelson walks from Naotcha to Chimwankhunda, 1.5 km distance in 30 minutes. Find his average speed in
 - a. km/h

b. m/s

- **4.** A car starts from rest and accelerates to a speed of 24 m/s in 6 seconds. Calculate its acceleration.
- **5.** A body changes its speed from 80 m/s to 40 m/s in 10 s. Calculate its retardation.
- **6.** A bicycle rider accelerates from rest to a velocity of 30 m/s in 10 s. Calculate the acceleration of the rider.
- 7. If a body moves a distance of 10 m in 5s, then calculate the speed of the body.
- **8.** Elita is running at a speed of 10 m/s speeds up uniformly to a speed of 20 m/s in 5 s. Calculate her acceleration.
- **9. Figure 8.17** shows a graph of speed against time of an object thrown vertically upwards and after 3 seconds returns to the same position downwards.

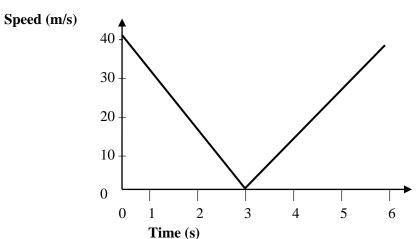
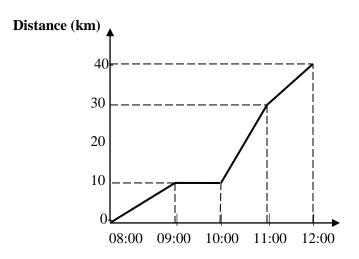


Figure 8.17

- **a.** Describe the movement of an object in the first 3 seconds.
- **b.** From the graph, what time is the speed of an object
 - i. greatest
 - ii. least
- **c.** Calculate the acceleration of the object as it falls back towards the ground.
- **d.** Calculate the greatest distance above the ground reached by the drop.

10. Figure 8.18 shows a distance—time graph of an object.



Time of the day

Figure 8.18

- **a.** Describe the motion of an object during the first 2 hours.
- **b.** What is the total distance travelled by the object?
- **c.** What is the total time taken by the object to cover the distance?
- **d.** Calculate the speed of the object during the first 1 hour.
- **e.** Calculate the average speed of the object during the entire journey.
- **11. a.** Plot the appropriate distance-time graph from the results given.

Distance (m)	0	10	20	30	40
Time (s)	0	2	4	6	8

Table 8.4

- **b.** From your graph, calculate the speed during 8 seconds.
- **12.** A car, initially at rest, moves with uniform acceleration for 10 seconds until it attains a velocity of 30 m/s. It then proceeds at this velocity for 20 seconds and finally comes to rest after retarding uniformly for a further 5 seconds.
- **a.** Draw a velocity–time graph of the motion
- **b.** From the graph calculate
- **i.** The deceleration of a car during the last 5 seconds
- ii. The total distance moved by the car.

13. Figure 8.19 is a velocity—time graph of Chitundu Luxury Coach. Use it to answer the questions that follow.

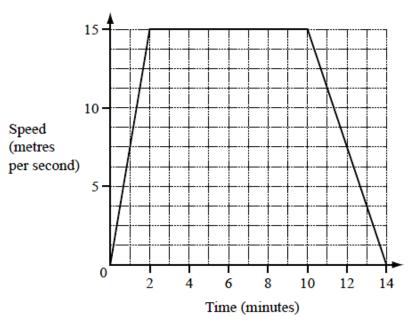


Figure 8.19

- **a.** Describe the motion of the coach during the entire 14 minutes.
- **b.** Calculate the acceleration during the first 2 minutes.
- **c.** Calculate the retardation during the last 4 minutes.
- **d.** Calculate the total distance covered.
- **14.** State the difference between;
 - a. Scalar quantity and vector quantity.
 - **b.** Distance and displacement
 - c. Speed and velocity.
- **15.** A car travelling at 5 m/s is uniformly accelerated at 8 m/s 2 for 7 seconds. Calculate the distance covered by the car.
- **16.** A particle is sliding down a slope with a uniform acceleration of 5 m/s 2 . If its initial velocity was 3 m/s, calculate its velocity after it has slid 20 m down the slope.
- 17. A ball is dropped vertically downwards at an initial speed of 10 m/s. Calculate its velocity after 10 s. (Assume $g = 10 \text{ m/s}^2$).

CHAPTER 9

Work and energy

Objectives

At the end of chapter 9, you must be able to:

- Calculate work done
- Explain the conservation of mechanical energy
- Solve problems related to work and energy

9.1 Work

Work is done when a force produces motion. In physics work is defined if force applied on object displaces the object in the direction of force. The greater the force and the greater the distance moved, the more work is done.

For example: an example is when you are running, when you carry a load up a ladder and when a car is moving.

Work is said to be done when a force moves its point of application in the direction of the force.

Work done = force x distance moved by force in the direction of the force

If force is measured in Newton (N), distance in metres (m), then work is measured in Nm or Joule (J).

1 Joule of work is done when a force of 1 N moves an object 1 m in the direction of the force.

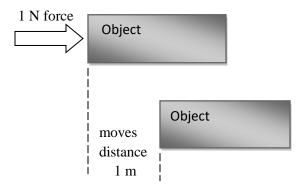


Figure 9.1 demonstrating work done

Worked examples

1. Ramazan provides a force of 50 N to move an object a distance of 100 cm. Calculate the work done.

Solution

$$F = 50 \text{ N}$$
 $d = 100 \text{ cm} = 1 \text{ m}$
 $W = F \times d$
 $W = 50 \text{ N} \times 1 \text{ m}$
 $W = 50 \text{ Nm} \text{ or } 50 \text{ J}$

2. Yankho has a mass of 80 kg. Calculate the work done by Yankho in climbing a ladder 5 m high.

Solution

Exercise 9.1

In your groups, answer the following questions:

- 1. Find the work done in each case. Show your working:
- a. A 20 N force moves an object 10 m.
- **b.** A 50 kg bag of flour is lifted 2.5 m.
- c. A 200 g mass moves a distance of 50 cm.
- **2.** The work done by a 10 N force to move an object is 30 J. Calculate the distance covered by an object.

Experiment 9.1

AIM: To find the amount of work done

MATERIALS: Ruler or tape measure, spring balance, scale, masses, a wall, a ladder or stairs and a bench.

PROCEDURE:

- 1. Tie a rope to the mass and suspend it to the spring balance to find its weight or force in Newton (N). Use a ruler or tape measure to measure the distance from the ground to the top of a bench in metres (m). Lift the mass from the ground to the top of the bench. Calculate the work done $(w = f \times d)$.
- **2.** Step on a scale to find out your mass, then convert your mass from kilograms to Newtons by simply multiplying by 10. Use a ruler or a tape measure to measure the length of a ladder. Lean the ladder against a wall and climb it up to the end. Calculate the work done $(w = f \times d)$.

Work done by a force acting at an angle

A force, F, can act on a body so as to move it in a direction other than its own. This situation can occur only if there is some other force preventing motion taking place in the direction of a force. **An example** is a man pulling a garden roller as shown in **Figure 9.2.**

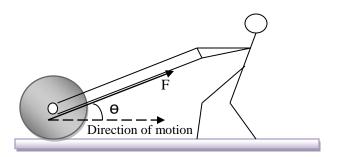


Figure 9.2 a man pulling a roller

In **Figure 9.2**, the man is holding the handle at an angle Θ to the horizontal and exerts a force F in the direction shown. The work done by the force F in the direction of motion is found by using a formula:

 $W = F \times \cos \theta$

Worked example

A lady applies a force of 60 N to move a vacuum cleaner at an angle of 60^0 to the horizontal. Calculate the work done.

Solution

$$F = 60 \text{ N}$$
 Angle $\theta = 60^{\circ}$

 $W = F \times \cos \Theta$

 $= 60 \text{ N} \times \cos 60^{\circ}$

W = 30 J

9.2 Conversion of mechanical energy

Energy can be converted from one form to another. A common conversion of mechanical energy is from potential energy to kinetic energy or vice versa. When there is conversion of these mechanical energies, some energy is usually wasted in form of heat or sound.

This can be demonstrated by using a pendulum.

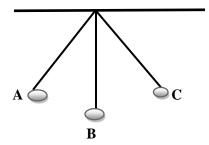


Figure 9.3 a pendulum

When a bob is made to oscillate, it converts kinetic energy to potential energy by moving to points A and C. The potential energy is maximum at points A and C. Kinetic energy is maximum at point B. This means that the energy of the bob is all potential energy at A and C and it is all kinetic energy at B.

In this case, Kinetic energy and potential energy are interchangeable continually.

The energy changes can be summarised as follows:

A to B to C: Potential energy to kinetic energy to potential energy

After some time, the bob fails to reach positions A and C, because potential energy changes to heat energy due to friction between the bob and the air particles.

Law of conservation of mechanical energy

From the pendulum, it is noticed that the loss in PE of a pendulum equals the gain of the KE and vice versa.

When a bob oscillates from point A to point B, its potential energy at point A equals its kinetic energy at point B. When the bob oscillates from point B to point A, its kinetic energy at point B equals its potential energy at point A. The total mechanical energy is kept constant during this oscillation. This means there is neither increase nor decrease in mechanical energy. Energy is not lost or created; it simply changes from one form to another. Therefore, mechanical energy is conserved and it is summarized as the law of conservation of energy.

Law of conservation of energy states that energy is neither created nor destroyed, but it can simply change from one form to another.

Energy-work theorem

Work is done whenever a force moves an object.

Work done = force x distance moved.

Energy is the ability to do work. Things have energy in order to do work. Whenever work is done, energy is transformed.

For example, if you lift a 20kg box to a height of 5 m, the work done by lifting the box will be:

W = F x d W = 200 N x 5 mW = 2000 J

In this case, the box will gain a potential energy of **2000 J**, assuming there is no air resistance.

If this box is dropped to the ground, **2000 J** of work is done in accelerating the box. The box losses **2000 J** of potential energy. If the box is about to hit the ground, **2000 J** of kinetic energy is gained. If the box hits the ground and comes to rest, **2000 J** of kinetic energy is changed into heat energy.

Therefore, work done equals energy

Work done = Energy

Energy is measured in Joules (J).

Worked example

A 1.5 kg brick is lifted from the ground to a height of 3 m.

Calculate

- **a.** the work done in lifting the brick.
- **b.** the energy used in lifting the brick.
- **c.** the potential energy gained by the brick after being lifted to a height of 3 m.

Solution

- **a.** W = F x d W = 150 N x 3 mW = 450 J
- **b.** E = WE = 450 J
- c. PE = WPE = 450 J

Summary

Work is said to be done when a force moves its point of application in the direction of the force. Work done by a force acting in the direction of motion is found by using a formula:

Work done = force x distance moved by force in the direction of the force

SI unit for work done is Joule (J).

Work done by a force acting at an angle to the horizontal direction of the motion is found by using a formula:

Work done = force x cosine Θ

Law of conservation of mechanical energy states that energy is neither created nor destroyed but it simply changes from one form to another.

SI unit of energy is Joule (J)

Energy- work theory is given as:

Work = Energy

Student assessment

- 1. Define
 - a. Work
 - **b.** Energy
- 2. Explain the similarity between work done and energy.
- 3. State the law of conservation of mechanical energy.
- **4.** Describe energy changes that take place in a vibrating spring.
- **5. Figure 9.4** is a diagram of a simple pendulum. The mass vibrates between the points X and Z through Y.

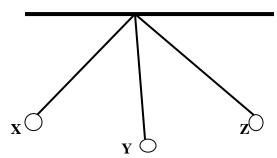


Figure 9.4

- **a.** At which point is:
 - i. Potential energy maximum?
 - ii. Potential energy minimum?
 - iii. Kinetic energy minimum?
 - iv. Kinetic energy maximum?
- **b.** What happens to the potential energy when mass oscillates from:
 - **i.** X to Y?
 - **ii.** Y to X?
 - iii. Z to Y?
 - **iv.** Y to Z?
- **c.** What happens to the kinetic energy when mass oscillates from:
 - **i.** X to Y?
 - **ii.** Y to X?
 - iii. Z to Y?

- **iv.** Y to Z?
- **d.** Describe the energy changes that take place when a mass oscillates from
 - i. X to Y
 - ii. Y to X
 - iii. Z to Y
 - iv. Y to Z
 - v. X to Y to Z
- e. Explain why a mass would eventually stop oscillating.
- **6.** Calculate the work done when a 10kg bag is lifted to a height of 2 m.
- 7. How much work is done if a force of 80 N moves an object a distance of 5 m?
- **8.** A 50 N force is used to lift an object. Calculate the distance covered by the object if the work done on it is 100 J.
- **9.** What is the total work done when 10 bricks of mass 1.5 kg each are lifted to a height of 3 m?
- **10.** Christopher used 20 J of energy to lift a book from the ground up on to a shelf.
- **a.** Calculate the potential energy of the book when it is on the shelf.
- **b.** State the work done to lift the book up on to the shelf.
- **c.** When the book falls from the shelf, how much kinetic energy does it have just before it hits the ground? (Assume the air resistance is negligible).
- **d.** What happens to this form of energy when the book hits the ground?
- **11.** Carol raised a 40kg mass to a height of 2 m above the ground.
- a. Calculate the potential energy of the mass after being raised to a height of 4 m.
- **b.** What is the work done by Carol on the mass?
- **c.** If the mass falls, calculate the kinetic energy:
- i. when it is half-way down.
- ii. just before impact with the ground.

12. Figure 9.5 is a diagram of a mass hanging on a spring. If the mass is pulled to point \mathbf{R} and released, it vibrates between points \mathbf{R} and \mathbf{P} .

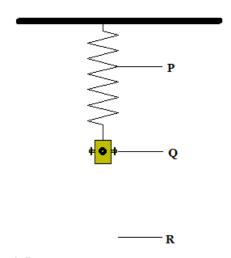


Figure 9.5

- a. At which point does the mass have
 - i. highest kinetic energy?
 - ii. lowest kinetic energy?
- **b.** Explain the energy changes that take place when the mass is vibrating from $\bf P$ to $\bf R$.

CHAPTER 10

Machines

Objectives

At the end of chapter 10, you must be able to:

- Describe what machines are
- Explain efficiency, mechanical advantage and velocity ratio of a machine
- Calculate efficiency, mechanical advantage and velocity ratio of machines

10.1 What are machines?

The term 'machine', makes many people think it is a complicated piece of mechanism. The term 'machine' has tended to lose its original meaning. It does not matter how a machine is deemed complicated, but there are a limited number of basic mechanical principles:

- In a machine forces are involved in energy conversions. Therefore, a machine is a device that causes a change in the way that these forces act.
- Machines can help to raise heavy objects with a smaller effort. Therefore, a machine is a
 device that changes the magnitude of a force and makes work to be done easier.
- In a machine the direction of a force changes; therefore, a machine is a device that changes the direction that a force acts on.

From the principles explained above, machines are considered to change either the magnitude or direction of a force.

In physics, a machine is any device in which a force applied at one point can be used to overcome a force at some other point.

Examples of machines are levers, pulleys and inclined planes.

The lever

A **lever** is any rigid body which is pivoted about a point called the **fulcrum.** Examples of levers are claw hammer, wheelbarrow, pliers, nut crackers, sugar tongs, table knife and scissors.

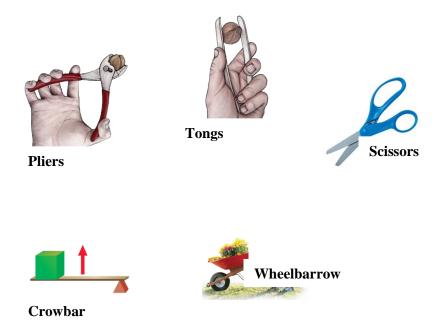


Figure 10. 1 levers

In levers, a force called the **effort** is applied at one end to overcome a force called the **load** at the other end. Levers use the principle of moments as discussed in book 2, chapter 6 and section 6.6.

A lever is used as a **force multiplier** because it uses a smaller effort to move a larger load. In ancient times, humans used levers to lift very heavy objects like stones. It was believed that a person can move the earth with a lever.

Pulleys

A **pulley** is a grooved rim (rims) mounted in a framework called a **block.** The effort is applied to a rope, chain or belt which passes over the pulleys.

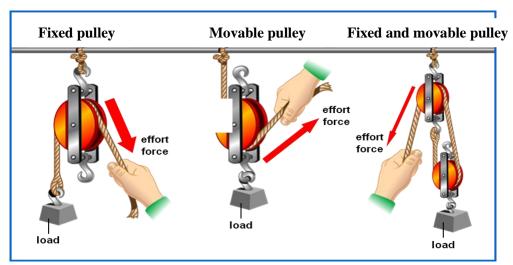


Figure 9.2 pulley systems

Inclined plane

An **inclined plane** is a plane surface at an angle to the horizontal. It is easier to move a heavy object up an inclined plane than to move it vertically upwards.

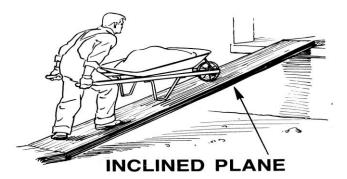


Figure 10.3 inclined plane

Exercise 10.1 In your groups, use the following words to complete the statements: A-inclined plane B-lever C-effort D-load E-simple machine 1. A simple machine that has a flat, slanted surface is an ______. 2. A simple machine that has a bar pivoting around a fulcrum is called a ______, 3. The object being moved by a lever is ______. A ______ has only a few parts. The ______ is the force used to do work.

10.2 Efficiency, mechanical advantage and velocity ratio of a machine

Efficiency of a machine

Efficiency of a machine is the ratio of the work done by the machine to the total work put into the machine expressed in percentage.

Work done by the machine on the load = load x distance load moves. This work done is called **work output.**

Work put into the machine by the effort = effort x distance effort moves. This work done is called **work input.**

In a perfect machine, efficiency is 100 %. A **perfect machine** is a theoretical machine, with a useless load of zero. **Useless load** is the force needed to overcome the frictional forces between the moving parts of a machine to raise any of its moving parts. The efficiency of 100 % means the work output equals work input.

Using a perfect machine, if an effort of 100 N is moved at a distance of 2m to raise a 200 N force:

Work put into the machine by effort = work input = 100 N x 2 m = 200 JWork done by the machine on the load = work output = 200 JThe load will move a distance of 1 m

In practical machines, efficiency is always less than 100 %. Some work is always wasted to overcome the frictional force between the moving parts of a machine and raise any of its moving parts. The efficiency is less than 100 % because the useful work done by the machine is less than the work put into the machine by the effort.

Mechanical advantage of the machine

The Mechanical advantage of a machine is the ratio of the two forces, the load and the effort. The Mechanical advantage of a machine is found by dividing load by effort.

$$\begin{aligned} & \textbf{Mechanical advantage} = \frac{\textbf{Load}}{\textbf{Effort}} \end{aligned}$$

Where mechanical advantage is greater than 1, it means the machine is designed to overcome a load which is greater than the effort. An example is a car jack used to lift a motor car.

When mechanical advantage is less than 1, it means the machine is designed so that the effort used is greater than the load. For example, a bicycle has a mechanical advantage of less than 1. This can be noticed when the cyclist is cycling uphill where more effort is applied to work against the force of gravity. The cyclist is said to be working at a mechanical disadvantage. The cyclist simply dismounts and walks.

Velocity ratio of a machine

The **velocity ratio** of a machine is the ratio of the distance moved by the effort to the distance moved by the load in the same time. It has no units.

In a situation where mechanical advantage is greater than 1, velocity ratio is greater than 1 because the effort moves through a much greater distance than the load.

The velocity ratio of a machine can also be called **speed ratio**.

Relationship between mechanical advantage, velocity ratio and frequency:

work = force x distance

efficiency =
$$\frac{\text{Load x distance the load moves}}{\text{Effort x distance the effort moves}}$$
 x 100 %

But $\frac{\text{Load}}{\text{Effort}}$ = Mechanical advantage (M.A.)

$$\frac{\text{distance the load moves}}{\text{distance the effort moves}}$$
 = $\frac{1}{\text{velocity ratio (V.R.)}}$ x 100 %

Therefore, efficiency = M.A. x $\frac{1}{\text{velocity ratio (V.R.)}}$ x 100 %

Efficiency = $\frac{\text{M.A}}{\text{V.R.}}$ x 100 %

Worked examples

1. Figure 10.4 shows a wheelbarrow used to lift a load of 400 N.

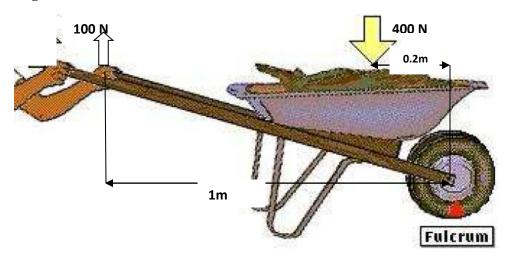


Figure 10.4

Calculate

- a. the mechanical advantage of the machine
- **b.** the velocity ratio of the machine
- **c.** efficiency of the machine.

Solution

a. MA =
$$\frac{\text{Load}}{\text{Effort}}$$

= $\frac{400 \text{ N}}{100 \text{ N}}$

$$MA = 4$$

b.
$$VR = \frac{\text{distance moved by effort}}{\text{distance moved by load}}$$

$$= \frac{1 \text{ m}}{0.2 \text{ m}}$$

$$VR = 5$$

c. Efficiency =
$$\frac{\text{work output}}{\text{work input}}$$
 x 100 %

$$= \frac{400 \text{ N x } 0.2 \text{ m}}{100 \text{ N x } 1 \text{ m}} \quad \text{x } 100 \text{ \%}$$

Efficiency = 80 %

OR
Efficiency =
$$\frac{MA}{VR}$$
 x 100%
$$= \frac{4}{5}$$
 x 100%

Efficiency = 80%

2. Figure 10.5 shows a pulley system used to raise a 180kg mass. The load moves a distance of 5m.

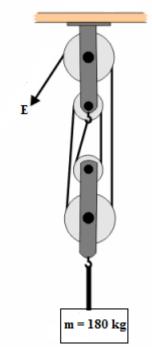


Figure 10.5

Calculate:

- a. the mechanical advantage, MA of the pulley system
- **b.** the effort used to raise the load
- c. the velocity ratio, VR for this system
- **d.** the distance moved by the effort
- **e.** work done by the effort
- **f.** work done on the load.

Solutions

a.
$$MA = number of pulley systems $MA = 4$$$

b. MA =
$$\frac{\text{Load}}{\text{Effort}}$$

Effort = $\frac{\text{Load}}{\text{MA}}$

= $\frac{180 \times 10 \text{ N}}{4}$

Effort = 450 N

c. VR = 4 (the number of ropes supporting the load)

d. $VR = \frac{\text{distance moved by effort}}{\text{distance moved by load}}$

Distance moved by effort = $VR \times distance$ moved by load

 $= 4 \times 5 \text{ m}$

Distance moved by effort = 20 m

3. Figure 10.6 shows a 500 N object pushed to a lorry up the height 2 m using a plank of length 10 m.

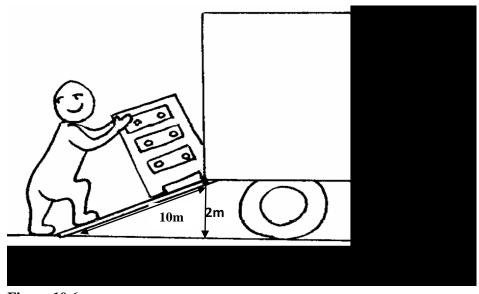


Figure 10.6

Calculate

a. the mechanical advantage, MA of an inclined plane, if the effort is 200 N

- **b.** the velocity ratio
- **c.** the work done by the effort
- **d.** the work done on the object.

Solution

a. $MA = \underline{Load}$

Effort

 $= \frac{500 \text{ N}}{200 \text{ N}}$

MA = 2.5

b. $VR = \frac{\text{distance moved by effort}}{}$

vertical distance moved by load

$$=\frac{10 \text{ m}}{2 \text{ m}}$$

VR = 5

 \mathbf{c} work done by the effort = effort x distance moved by effort

 $= 200 \text{ N} \times 10 \text{ m}$

Work done by the effort = 2000 J

d. Work done on load = load x distance moved by load

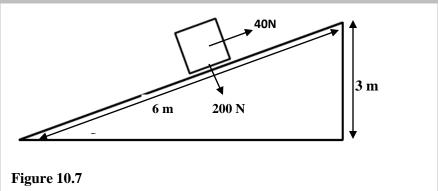
 $= 500 \text{ N} \times 2 \text{ m}$

Work done on load = 1000 J

Exercise 10.2

In your groups, answer the following questions:

- **1.** Derive a formula which shows the relationship between efficiency, mechanical advantage and velocity ratio.
- **2. Figure 10.7** shows 200 N load dragged up to the platform using an inclined plane and using an effort of 40 N.



Calculate

- **a.** the mechanical advantage, MA of the inclined plane.
- **b.** the velocity ratio, VR of the plane.
- **c.** the work done by the effort.
- **d.** the work done on the load.

Summary

Machines are devices that can reduce the effort required to move a load. Machines make work to be done easier.

Examples of simple machines are inclined plane, levers and pulley.

Mechanical advantage of a machine = Load Effort

MA = number of pulley systems

VR = the number of ropes supporting the load

Velocity ratio = $\frac{\text{distance moved by the effort}}{\text{distance moved by the load in the same time}}$

Efficiency = work output (load x distance load moves) x 100 % work input (effort x distance effort moves)

Efficiency can also be calculated from the formula:

Efficiency =
$$\frac{MA}{VR}$$
 x 100 %

Student assessment

- **1.** Define the following:
 - a. Machine
 - **b.** Mechanical advantage
 - c. Velocity ratio
- 2. Derive a formula which relates efficiency, mechanical advantage and velocity ratio.
- **3. Figure 10.8** is a diagram of a lever.

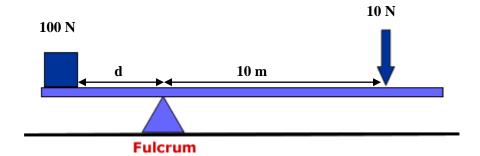


Figure 10.8

- **a.** Calculate the value of d.
- **b.** Calculate the mechanical advantage of the machine, assuming there is no friction at the fulcrum.
- **c.** Calculate the velocity ratio of the lever.
- **d.** Suggest one way of increasing the MA of the lever.
- **4.** Explain why a lever is used as a force multiplier.

5. Figure 10.9 is a diagram of a pulley system. The distance moved by the load is 10 m.

Figure 10.9

Calculate

- **a.** the mechanical advantage of the pulley system.
- **b.** the effort used to raise the load.
- **c.** the velocity ratio.
- **d.** the distance moved by the effort.
- **e.** work done by the effort.
- **f.** work done on the load.
- **6. Figure 10.10** is a diagram of an inclined plane.

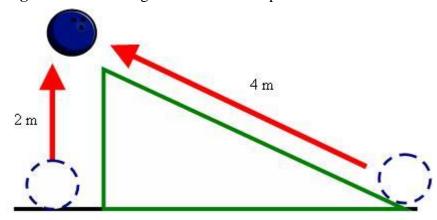


Figure 10.10

- **a.** Calculate the velocity ratio of the machine.
- **b.** If the efficiency of the machine is 95%, calculate its mechanical advantage.
- 7. Figure 10.11 is a diagram of the simple two-pulley system used to lift 5 kg mass

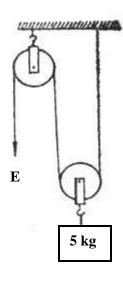


Figure 10.11

- **a.** State the mechanical advantage of a pulley system.
- **b.** State **three** ways of increasing the MA of the machine.
- **c.** Calculate the distance the string at E must be pulled to lift the mass 0.5 m.
- **d.** State the velocity ratio of the pulley system.
- e. Calculate the efficiency of the pulley system.
- **f.** What is the force at E required to lift the 5kg mass?
- **8.** Catherine uses a rope to drag a box of weight 500 N up a smooth inclined wooden plank of effective length 7 m and on to a platform 3.5 m high.

Calculate:

- **a.** the effort she must exert on the rope
- **b.** the velocity ratio
- c. the mechanical advantage
- **d.** the work done on the box in Joules.
- **9.** Yamikani uses a rope to drag a box of mass 100 kg up an inclined plane of length 6 m to a platform 1.5 m high.
 - **a.** Draw the arrangement of the inclined plane.
 - **b.** If he applies an effort of 200 N, calculate:

- i. the mechanical advantage of the machine
- ii. the velocity ratio of the machine
- iii. the efficiency of the machine.
- **c.** How much work was done on the box as a result of being dragged up on the platform?
- **d.**How much potential energy was gained by the box as a result of being raised to the platform?
- **e.** Calculate the amount of heat energy produced as a result of the friction between the plank and the 100kg box.
- **f.** State **two** ways of minimizing the amount of heat lost in this arrangement.
- **10.** A pulley system has a velocity ratio of 2. Show where the load and effort are applied to the pulley system.
 - a. Use the pulley system to complete **Table 10.1**.

Table 10.1

Load (N)	5	10	15	20	25
Effort (N)	1	2	3	4	5
MA					
Efficiency (%)					

- **b.** Explain **two** reasons why the efficiency of the pulley system is less than 100 %.
- **11.** Explain the characteristics that machines have in common.

CHAPTER 11

Current electricity

Objectives

At the end of chapter 11, you must be able to:

- Describe electric current
- Describe potential difference
- Describe electrical resistance
- Analyse electric circuits
- Determine electric power and energy

11.1 Electric current

The atoms in a solid are held together by strong electrical forces. These atoms can only vibrate about a fixed mean position. A solid which is a conductor contains a great number of electrons which are loosely held and are free to move. These are known as **free electrons**. When an electric field is applied there is a drift of electrons in a conductor from the negative side to the positive side. This movement of charge is known as **electric current**.

Therefore, **electric current** is the flow of electric charges (electrons) from the negative side of an electric field to the positive side.

Figure 11.1 shows the direction of electrons or electric current in the circuit.

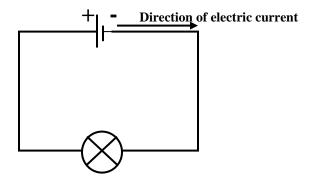


Figure 11.1 direction of electric current

The unit of electric current (I) is the **Ampere** (A). Therefore, the SI unit of current is Ampere (A).

Current is measured by an ammeter in the circuit.

Figure 11.2 an ammeter

The symbol for an ammeter is:

Using an ammeter in the circuit to measure current

- Connect the positive (red) terminal of an ammeter to a positive terminal of a power supply (e.g. cell or battery) and the negative (black) terminal to a negative terminal of a power supply. Any mistake on connection will break an ammeter.
- Connect an ammeter in series circuit because it measures current passing through a component or a wire. An ammeter has very low resistance and has a negligible effect to the flow of current.

The smaller currents are measured by a **milliammeter**. The unit then is **milliampere** (**mA**).

$$1 A = 1000 \text{ mA}$$

The quantity of electricity (electric charge) which passes any point in a circuit will depend on the strength of the current and the time for which it flows. The quantity of electric charge is called **Coulomb.**

A coulomb is the electric charge which passes any point in a circuit in 1 second when a steady current of 1 ampere is flowing.

Using the following symbols:

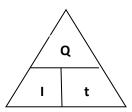
Q for electric charge in Coulombs, C

I for current in Amperes, A

t for time in seconds, s

Electric current, I can be found as:

$$I = \frac{Q}{t}$$



From the above equation, we can define **current** as the rate at which the electric charge flows.

Worked examples

1. An electric charge of 50 C flows past a point in a wire in 5 seconds. Calculate the current flowing in the wire.

Solution

$$Q = 50 C$$
 $t = 5 s$

$$I = Q$$

$$I = \frac{50 \text{ C}}{5 \text{ s}}$$

$$I = 10 A$$

2. A current of 30 mA flows in a circuit for 100 seconds. Calculate the quantity of electric charge.

Solution

$$I = 30 \text{ mA} = 3 \times 10^{-3} \text{ A}$$
 $t = 100 \text{ seconds}$

Q = It
Q =
$$30 \times 10^{-3} \text{ A} \times 100 \text{ s}$$

Q = 3 C

Exercise 11.1

In your groups, answer the following questions:

- 1. Convert 100 mA into Amperes (A)
- **2.** How many milliamperes (mA) are in 0.003 A?
- **3.** Calculate the electric charge delivered if a current of 20 A flows for 10 seconds.
- **4.** Calculate the current in the circuit if a 120 C of electric charge flows for 2 seconds.

11.2 Potential difference (pd) or Voltage

When a cell is connected in the circuit, the electric charge flows because it has the energy called **potential or potential energy**. In a circuit, potential is the energy associated with a charge at a point in an electric field because of the force acting on it.

Work is done against the electric field when an electric charge is moved from a lower potential level to a higher potential level. The difference between the two levels is known as the **potential difference** (**pd**) or **voltage.**

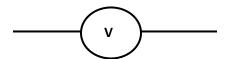
Potential difference is defined as a difference in potential between two points, equal to the energy change when a unit electric charge moves from one place to another in an electric field.

The SI unit of potential difference is the **volt** (V).

Potential difference (which is also called **voltage**) is measured by a **voltmeter**.

Figure 11.3 a voltmeter

The symbol for a voltmeter is:



Connecting a voltmeter

A voltmeter is connected in the following ways:

- A positive side (red side) of a voltmeter is connected to the positive terminal of a cell or battery or any power supply while a negative side (black side) is connected to a negative terminal.
- A voltmeter is connected in a parallel circuit, across a component that it is measuring its voltage because it measures voltage between two points. A voltmeter has very high resistance. Connecting a voltmeter in a series circuit prevents the flow of current.

Two points are at a potential difference of 1 volt if 1 Joule of work is done per Coulomb of electric charge from one point to another.

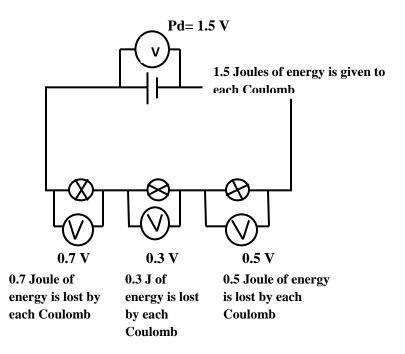


Figure 11.4 Measuring potential difference using a voltmeter

Potential difference is lost in the bulbs and none is lost in the connecting wire. The sum of the potential differences lost in the bulbs equals the potential difference across the supply.

Sum of potential differences = 0.7 V + 0.3 V + 0.5 V = 1.5 V

Electromotive force (EMF)

Each cell or battery has the potential difference written across it, e.g. 1.5 V.

A cell or a battery produces its highest potential difference when it is not in the circuit and when it is not supplying current. This maximum potential difference is called the **electromotive force** (**EMF**) of the cell or a battery.

Electromotive force (EMF) is the maximum potential difference across a cell or battery when it is not in a circuit and not supplying current (when I = 0 A).

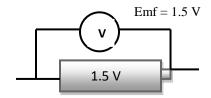


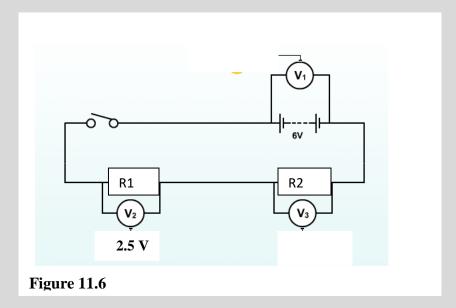
Figure 11.5 measuring Emf

When the cell is connected in the circuit and supplies current, the potential difference across the cell drops because of energy wasted inside the cell. For example, a potential difference across a 1.5 V cell can be 1.3 V. Part of the energy is used to push electrons and overcome internal resistance.

Exercise 11.2

In your groups, answer the following questions:

- 1. Explain the difference between potential difference and electromotive force.
- **2. Figure 11.6** is a circuit diagram showing voltmeters used to measure voltage across the battery and the resistors.



- **a.** Calculate the reading of the voltmeter V_3 .
- **b.** How much energy is given to each Coulomb by the battery?
- **c.** How much energy is lost by each Coulomb in:
 - **i.** R₁?
- **ii.** R₂?

11.3 Electrical resistance

In **section 11.2**, it was explained that current flows through the conductor or circuit because of the potential difference (voltage which is applied across it.

Different materials have different conductivities when they are connected in the circuit. For example:

- In a copper wire current is high because electrons pass easily. This shows that a copper wire is a good conductor. Therefore, copper has low resistance.
- In a nichrome wire of a similar size as the copper wire gives low current because electrons pass with difficulties. This shows that a nichrome wire is not a good conductor. Therefore, nichrome wire has high resistance.

The conductivity of the wires mentioned above is different because the materials in the wires provide different opposition to the flow of electrons. This opposition is called **electrical resistance.**

Electrical resistance is the opposition to the flow of electrons in a wire or a circuit.

Therefore, copper wire has low electrical resistance while nichrome wire has high electrical resistance.

Electrical resistance is measured in **Ohms** (Ω). Therefore, the SI unit of resistance is **Ohm** (Ω).

If the electric current through a conductor is I when the pd across it is V, its electrical resistance can be calculated by the equation:

$$\mathbf{R} = \frac{\mathbf{V}}{\mathbf{I}}$$

Worked example

The potential difference across a nichrome wire is 10 V. If the current flowing through the wire is 2 A, calculate the electrical resistance of a nichrome wire.

Solution

$$Pd = 10 V$$
 $I = 2 A$

$$R = \frac{\mathbf{V}}{\mathbf{I}}$$

$$R = \underline{10 \text{ V}}$$
$$2 \text{ A}$$

$$R = 5 \Omega$$

The ohm is the electrical resistance of a conductor in which the current is 1 A when a p.d. of 1 V is applied across it.

Factors affecting the electrical resistance

There are four major factors that affect resistance of a wire.

These factors are length of a wire, temperature, cross-sectional area and nature of the material.

If you want to vary one factor, the other three factors must be kept constant.

Length of the wire

Experiment 11.1

AIM: To investigate the effect of length of a wire on its resistance.

MATERIALS: Nichrome wire of length 100 cm, connecting wires, 2 cells, crocodile clips, ammeter, metre ruler and voltmeter.

PROCEDURE:

1. Connect the circuit as shown in **Figure 11.7.**

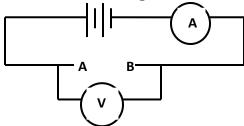


Figure 11.7

- 2. Complete the circuit by connecting a 100cm nichrome wire across the gap AB.
- 3. Record the voltmeter and ammeter readings. Record your results in **Table 11.1.**
- **4.** Repeat the experiment with other lengths, e.g. 80 cm, 60 cm, 40 cm and 20 cm. In each case record the voltmeter and ammeter readings in the table.
- **5.** Complete the values of resistance.

Length of wire(cm)	Voltage(V)	Current(A)	Resistance(Ω)
100			
80			
60			
40			
20			

Table 11.1

RESULTS

Resistance decreases as the length of the wire decreases from 100 cm going downwards.

EXPLANATION

As the length of the wire decreases, there are few collisions that take place between flowing electrons and stationary positive ions. In other words, there is reduction in opposition to the flow of electrons because there are few stationary positive ions that can cause resistance.

In general,

Shorter wire \rightarrow lower resistance

Longer wire \rightarrow higher resistance.

CONCLUSION

Therefore, the resistance of the wire varies directly with the length of the wire.

$R \alpha l$

Figure 11.8 shows the shapes of the graphs that can be plotted from experiment 11.1.

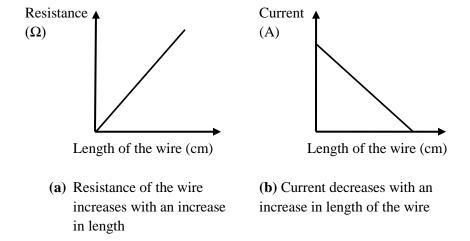


Figure 11.8 graphs showing the effect of the length of the wire on resistance

Thickness or cross-sectional area

Experiment 11.2

AIM: To investigate the effect of thickness of the wire on its resistance.

MATERIALS: 4 Nichrome wires of the same length and material but with different cross-sections or diameters, ammeter, voltmeter, connecting wires, crocodile clips and 2 cells.

PROCEDURES:

1. Set up the experiment as shown in Figure 11.9.

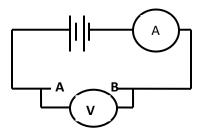


Figure 11.9

- **2.** Complete the gap AB with the smallest wire.
- 3. Record the voltage and ammeter readings.
- **4.** Repeat the experiment with nichrome wire of different thickness. In each case record, the voltmeter and ammeter readings.

Nichrome wire	Voltage(V)	Current (A)	Resistance(Ω)
1			
2			
3			
4			

Table 11.2

Calculate the resistance of a nichrome wire of each thickness by using the formula

$$\mathbf{R} = \mathbf{V}/\mathbf{I}$$

RESULTS

Resistance of the wires decreases as the thickness increases.

EXPLANATION/CONCLUSION

As the thickness of the wire increases, electrons are able to flow with less resistance. Therefore, resistance of the wire varies inversely with its cross-section or thickness.

$$R \alpha \frac{1}{A}$$

Figure 11.10 shows the shapes of the graphs that can be plotted from **experiment 11.9**.

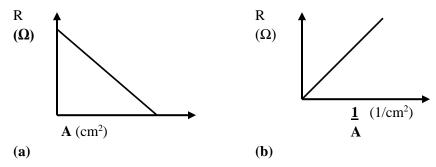


Figure 11.10 graphs showing the effects of cross-sectional area of the wire on resistance

Temperature

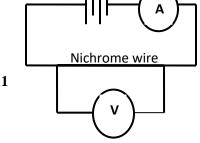
Experiment 11.3

AIM: To investigate the effect of temperature of the wire on its resistance.

MATERIALS: Nichrome wire of length 10 cm, connecting wires, ammeter, voltmeter, 2 cells and crocodile clips.

PROCEDURE:

1. Set up an experiment as shown in **Figure 11.11**



- Figure 11.11
- 2. Record the voltmeter and ammeter readings in the circuit.

Calculate the resistance of nichrome wire(R=V/I)

- 3. Light a Bunsen burner and place it at a distance of 20 cm from nichrome wire.
- **4.** Record the new voltmeter and ammeter readings, and then calculate the new resistance of the nichrome wire.
- **5.** Repeat the experiment with the Bunsen burner being at distances, 15cm, 10cm and 5cm. Record the voltmeter and ammeter readings then calculate the resistance in each case.

Distance from the	Voltage(V)	Ammeter(A)	Resistance(Ω)
burner(cm)			
No burner			
15			
10			
5			

Table 11.3

RESULTS

The resistance of the wire increases as the distance of the Bunsen burner from the nichrome wire decreases.

EXPLANATION

As the distance between the burner and the wire decreases, the temperature of the wire increases. An increase in the temperature of the wire increases the kinetic energy of the stationary positive ions in the wire. These particles increase their vibrations and cause more collisions with the flowing electrons. Hence increases resistance.

In general:

Low temperature \rightarrow low resistance High temperature \rightarrow high resistance.

CONCLUSION

Therefore, resistance of the wire varies directly with temperature.

RαT

Figure 11.12 shows the shapes of the graphs that can be plotted from experiment 11.3.

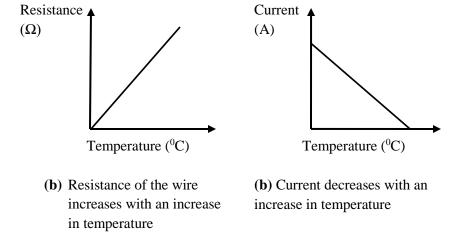


Figure 11.12 Graphs showing the effect of temperature on resistance

Nature of the material

Experiment 11.4

AIM: To investigate the effect of the nature of the material on the resistance of the wire.

MATERIALS: Copper wire and nichrome wire of the same thickness and length, ammeter, voltmeter, 2 cells and crocodile clips.

PROCEDURE:

1. Set up an experiment as shown in **Figure 11.13**.

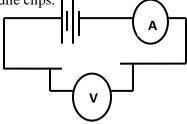


Figure 11.13

- **2.** Complete the gap with copper wire.
- **3.** Record the voltmeter and ammeter readings.
- **4.** Then calculate the resistance (R=V/I).
- **5.** Repeat the experiment with nichrome wire, and then record the voltmeter and ammeter readings to calculate the resistance.

RESULTS

Copper wire gives high ammeter reading while nichrome wire gives low current reading.

EXPLANATION

Copper wire gives high current reading because it has low resistance. Nichrome wire gives low current because it has high resistance.

This shows that copper wire is made up of copper material which has low resistance and nichrome wire is made up of nichrome material which has high resistance.

CONCLUSION

Therefore, different wires are made up of different materials that have different resistances.

Exercise 11.3

In your groups,

- **1.** Explain why the conductivity of different metals is different.
- **2.** Discuss with the help of a circuit diagram, how you would measure the resistance of a resistor.
- 3. Describe an experiment that you would carry out to find the length of a nichrome wire which can give a resistance of 0.8 Ω .

Ohm's law

A German physicist, **George Simon Ohm** was a physics teacher. In 1826 he published a book containing details of the experiments he made to investigate the relationship between the current passing through the wire and the potential difference across the supply at a constant temperature.

The experiments that he carried out had the results equivalent to the ones shown in **Table 11.4.**

Table 11.4

Number of cells	Potential difference (voltage) V	Current I (A)	Voltage Current	$\frac{\mathbf{V}}{\mathbf{I}}$
1	1.5	0.1	$\frac{1.5}{0.1}$	15
2	3	0.2	$\frac{3}{0.2}$	15
3	4.5	0.3	<u>4.5</u> 0.3	15
4	6	0.4	<u>6</u> 0.4	15

From Table 11.4, it has been noted that current increases as potential difference increases. This relation is called **Ohm's Law**.

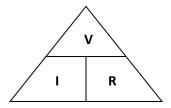
Ohm's law states that the current in a conductor is directly proportional to the potential difference between its ends, at constant temperature.

$$\frac{\mathbf{V}}{\mathbf{I}} = \mathbf{constant}$$

Constant is called Resistance, R

Therefore,

or
$$I = \frac{\mathbf{V}}{\mathbf{R}}$$



Whereby:

I is current in Amperes (A)

V is potential difference in volts (V)

 ${\bf R}$ is resistance in Ohms (Ω)

Verifying Ohm's law

Experiment 11.5

AIM: To verify Ohm's law

MATERIALS: Cells, switch, ammeter, voltmeter, resistor (a nichrome wire) and connecting wires.

PROCEDURE:

1. Set up the apparatus as shown in Figure 11.15.

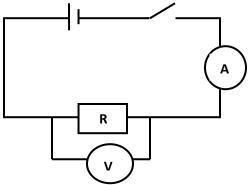


Figure 11.15

- 2. Close the switch and take the voltmeter and ammeter readings.
- **3.** Repeat the experiment with 2, 3 and 4 cells. Take the voltmeter and ammeter readings for each number of cells in **Table 11.5.**

Number of cells	Voltmeter reading (V)	Ammeter reading (A)	Resistance (Ω) Voltage Current
1			
2			
3			
4			

Table 11.5

DISCUSSIONS

- 1. Calculate the resistance for each number of cells.
- 2. What have you noticed about the results in question 1? Give a reason for your answer.
- 3. Do the results in **Experiment 11.5** verify the Ohm's law? Give a reason for your answer.

- **4.** Plot a graph of voltmeter reading (V) against the current reading (A).
- **5.** Describe the shape of the graph in question 4.
- **6.** Does the graph in question 4 verify the Ohm's law? Give a reason for your answer.

Ohm's law is applied only to some materials (metals and some alloys). Materials that obey Ohm's law, and hence have a constant resistance over a wide range of voltages, are said to be **ohmic**. Ohmic materials have a linear current—voltage relationship over a large range of applied voltages as shown in **Figure 11.16**.

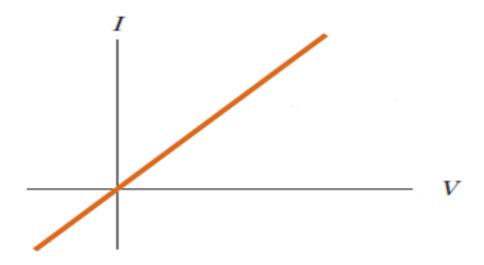


Figure 11.16 current-voltage-curve for an ohmic material

Materials having resistance that changes with voltage or current are **nonohmic**. Nonohmic materials have a nonlinear current–voltage relationship as shown in **Figure 11.17.**

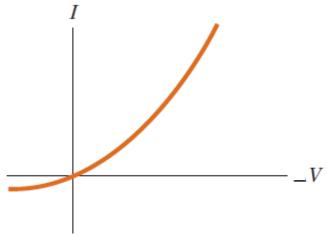


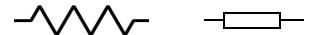
Figure 11.17 current-voltage curve for a nonohmic material

One common semiconducting device that is nonohmic is the diode.

Measuring resistance using an ohmmeter

A **resistor** is a device that causes resistance.

It is used to reduce the amount of current flowing in the circuit. The symbol for a resistor is shown below:



In Experiment 11.5, the resistance of the resistor is measured using the Ohm's law. Using Ohm's law, you connect a voltmeter across a resistor and an ammeter in series in the circuit. The resistance of a resistor is found by dividing the voltmeter reading by the ammeter reading.

Resistance = $\underline{\text{Voltmeter reading}}$

Ammeter reading

$$\mathbf{R} = \frac{\mathbf{V}}{\mathbf{I}}$$

The resistance of a resistor can also be found by using an ohmmeter. An ohmmeter is an instrument which is used to measure resistance of a resistor. Using an ohmmeter, you connect one terminal of an ohmmeter to one side of a resistor and the other terminal of an ohmmeter to the other side of a resistor. Take the reading of resistance on an ohmmeter.

Calculating resistance using Ohm's law

Worked examples

1. A potential difference of 30 V is needed to make a current of 5 A to flow through a wire. Calculate the resistance of the wire.

Solution

$$V = 30 V$$
 $I = 5 A$ $R = ?$

$$R = \frac{V}{I}$$

$$= \frac{30 \text{ V}}{5 \text{ A}}$$

$$R = 6 \Omega$$

2. Calculate the voltage across a 10Ω resistor carrying a current of 0.5 A.

Solution

$$R = 10\Omega$$
 $I = 0.5 A$ $V = ?$
 $V = IR \text{ (Ohm's law)}$
 $V = 0.5A \times 10 \Omega$
 $V = 5 V$

3. Calculate the current flowing through a 2Ω resistor when a potential difference of 3 V is applied across it

Solution

$$V = 3 V \qquad R = 2\Omega \qquad I = ?$$

$$V = IR$$

$$I = \underline{V}$$

$$R$$

$$I = \underline{3 V}$$

$$2\Omega$$

$$I = 1.5A$$

Exercise 11.4

In your groups, answer the following questions:

- **1.** Explain how you can verify Ohm's law experimentally.
- **2.** A resistor has a resistance of about 200 Ω . Calculate the potential difference required to produce a current of 2 A.
- **3.** A current of 300 mA flows through a 3 k Ω resistor. Calculate the potential difference across the resistor.
- **4.** Explain why temperature must always be constant when verifying Ohm's law.
- **5.** You are employed as a technician at Flames Television and you have been asked to find the resistance of an electronic component.
- a. Draw a circuit diagram that you can use, showing all materials that you need.
- **b.** Show how you can use the results obtained from your set up to find the resistance of a component.

Finding resistance of resistors using colour codes and standard notation

Colour codes

The resistance in ohms can be marked on the resistor using colours. This method is called **colour coding** or **resistance coding**.

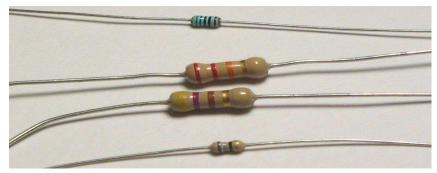


Figure 11.18 resistor colour codes

Each colour has its own standard notation (digit).

Resistors are colour coded with four or five bands to indicate their resistance.

Figure 11.19 shows a resistor that is colour coded.

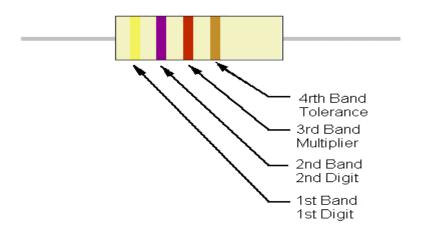


Figure 11.19 4 Band Resistor colour code layout

Explanation of bands on a colour coded resistor

The last band always gives tolerance. **Tolerance** is the extent to which the actual value of the resistance can vary.

The following are the values of tolerance:

Colour	Tolerance
Gold	± 5%
Silver	± 10%
No colour	$\pm~20\%$

The band which is second from the last band gives the number of noughts (zeros) called **multiplier.**

Other bands give the digits.

The following are colour codes:

Colour	digit
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Grey	8
White	9

Worked examples

Find the resistance of each of the following resistors.

1.

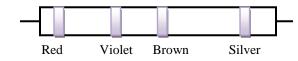


Figure 11.20

Solution

Last band is silver, therefore tolerance = $\pm 10\%$.

Second from last band is Brown: therefore, number of noughts =1(1 zero).

The first band is Red. Therefore, the first digit is 2.

The second band is Violet. Therefore, the second digit is 7.

The value of the resistance will be written as:

Red Violet Brown Tolerance
$$\begin{array}{cccc} 2 & 7 & 0 & \pm 10\% \end{array}$$

Resistance = $270 \pm 10\% \Omega$

2.

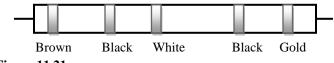


Figure 11.21

Solution

Last band is Gold, tolerance = $\pm 5\%$

Second from last band is black, noughts = none

First band is Brown, first digit = 1.

Second band is Black, second digit = 0

Third band is White, third digit = 9

The value of the resistance will be written as:

Brown Black White Black Gold
$$1 \quad 0 \quad 9 \quad - \quad \pm 5\%$$

Resistance = $109 \pm 5\% \Omega$

Standard notation

The resistors have numbers and letters printed on them.

Examples

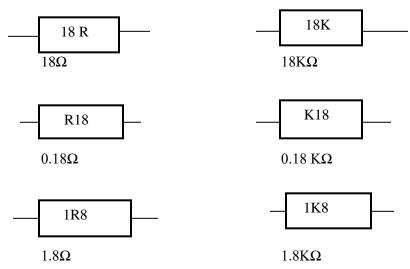


Figure 11.22 resistance code standard notation

The letters are used as tolerance.

Letter	Tolerance
F	± 1%
G	± 2%
J	± 5%
K	± 10%
M	$\pm~20\%$

Examples

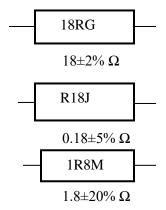


Figure 11.23 resistance code standard notation

Internal resistance of a cell

When a voltmeter is connected across a 1.5 V cell, it reads 1.5 V. This shows that chemical action within the cell causes an e.m.f. of 1.5 V.

When the cell is connected in a circuit and supplies current, the voltmeter reads 1.2 V. This is the potential difference (p.d) in the circuit. The reading on the voltmeter has dropped because the cell has resistance, like other components. This resistance is called **internal resistance**, **r**.

Internal resistance (r) is the resistance of a cell or battery to the current it causes. It is the resistance of the connections in the cell and some chemical effects e.g. polarization. The internal resistance is usually low, about 0.5Ω or so.

Internal resistance = "lost in voltage" current
$$r = \underline{v}$$

Lost in voltage, v = Ir

Electromotive force, E = potential difference, V + lost in voltage, Ir

$$E = V + Ir$$

Worked example

The e.m.f. across the terminals of a cell is 3.0 V. If the p.d. across the cell is 2.5 V and the current flowing is 2 A, calculate the internal resistance of a cell.

Solution

$$E=3\ V \hspace{1cm} V=2.5\ V \hspace{1cm} I=2\ A \hspace{1cm} r=?$$

Either:
$$E = V + Ir$$

 $3 V = 2.5 V + (2 A x r)$
 $3 V - 2.5 V = 2 A x r$
 $0.5 V = 2 A x r$
 $r = \underline{0.5 V}$
 $2 A$
 $r = \mathbf{0.25 \Omega}$

lost in voltage,
$$v = E - V$$

 $= 3.0 \text{ V} - 2.5 \text{ V}$
 $v = 0.5 \text{ V}$
 $r = \frac{V}{I}$
 $r = \frac{0.5 \text{ V}}{2 \text{ A}}$
 $r = 0.25 \Omega$

2. A battery has an e.m.f. of 12 V and an internal resistance of 0.6 Ω . What is the p.d. across its terminals when it is supplying a current of 5 A?

Solution

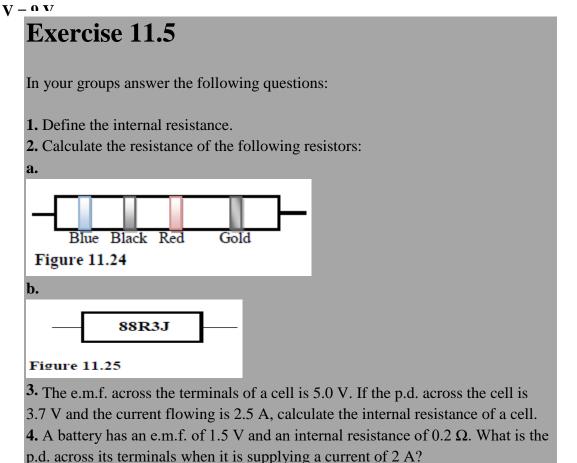
$$E = 12 V$$
 $V = ?$ $r = 0.6 \Omega$ $I = 5 A$

$$E = V + Ir$$

$$V = E - Ir$$

$$V = 12V - (5 \text{ A x } 0.6 \Omega)$$

```
V = 12 V - 3 V
```



11.4 Electric circuits

An **electric circuit** is a conducting path in which electrons flow or electric current takes place. An electric circuit can consist of a cell or battery, connecting wires, bulb, resistors, ammeter and voltmeter.

Circuits are grouped into two:

a. Series circuit

A **series circuit** is a circuit in which all the components are connected in one line. A series circuit has one conducting path.

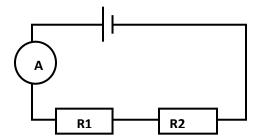


Figure 11.26 series circuit

b. Parallel circuit

A **parallel circuit** is a circuit in which components are connected in branches. A parallel circuit has more than one conducting path.

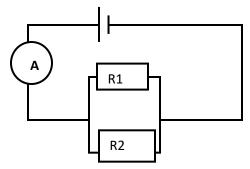


Figure 11.27 parallel circuit

Experiment 11.6

AIM: To investigate the effect of resistors in series and parallel circuits

MATERIALS: Cells, switch, ammeter, voltmeter, 3 nichrome wires (for any 3 resistors) and connecting wires.

PROCEDURE:

1. Set up the apparatus as shown in Figure 11.28.



2. Close the switch, and then record the ammeter and voltmeter readings in the table.

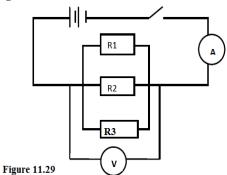
Voltmeter reading	Ammeter reading	Resistance(Ω)
(V)	(A)	

Table 11.6

3. Calculate the total resistance in the circuit by using a formula:

$$R = \underline{V}$$
I

4. Repeat the experiment by connecting the resistors in a parallel circuit as shown in **Figure 11.29.**



RESULT

When the resistors are connected in a series circuit the resistance in the circuit is higher than the resistance when they are connected in a parallel circuit.

EXPLANATION/CONCLUSION

Experiment 11.6, shows that the total resistance of the resistors connected in a series circuit is greater than the total resistance of the resistors connected in a parallel circuit.

Current in series and parallel circuits

Current in series circuit

Current across each and every component in series circuit is the same. This current is the same as the current from the supply.

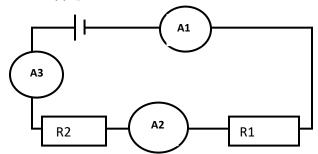


Figure 11.30 current flowing in series circuit

In this circuit, A1 = A2 = A3

Current in parallel circuit

When components are connected in a parallel circuit, the sum of the currents in a parallel circuit equals the current in series (main) circuit.

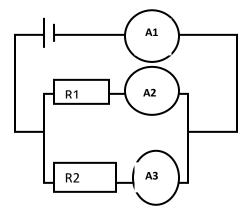


Figure 11.31 current flowing in a parallel circuit.

Sum of the current in parallel circuit = current in the main circuit

$$A2 + A3 = A1$$

Voltage in series and parallel circuit

Voltage in series circuit

The sum of the voltages across the components connected in series circuit equal the voltage or Pd from the supply.

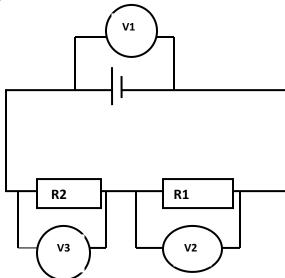


Figure 11.32 voltages in series circuit.

From the circuit shown in **Figure 11.32**:

$$V2 + V3 = V1$$

Voltage in a parallel circuit

Voltage across each component connected in parallel circuit is the same and equal to the supply

voltage.

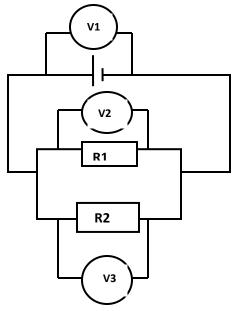


Figure 11.33 voltages in parallel circuit.

From the above circuit:

V1 = V2 = V3

Net resistance of resistors connected in series and parallel circuits

Net resistance of resistors connected in series

If resistors are connected in series, they give a higher resistance than any one of the resistors by itself because the effect is the same as joining resistance wires together to form a longer wire. The resistance of the resistance wire increases with length.

To find the total resistance of the resistors connected in series:

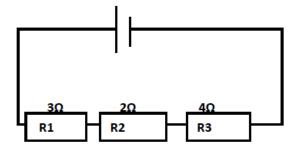


Figure 11.34 resistors connected in series.

Current through R1, R2 and R3 is the same current I since the resistors are in a series circuit.

The sum of the voltage across R1, R2, and R3 equals the voltage from the source (VT)

$$VT = V1 + V2 + V3...$$
 (i)

But
$$V = IR$$

$$V1 = IR1$$

$$V2 = IR2$$

$$V3 = IR3$$

Substituting in for the values of V in equation (i):

IRT

$$IRT = IR1 + IR2 + IR3$$

Dividing throughout by I, the final equation becomes:

$$RT = R1 + R2 + R3$$

VT

Therefore, total resistance of resistors in series circuit is found by the formula:

$$RT = R1 + R2 + R3 + \dots Rn$$

For example: The resistors 3Ω , 2Ω and 4Ω will have a total (net) resistance of 9Ω as shown below:

$$RT = 3\Omega + 2\Omega + 4\Omega$$
$$RT = 9\Omega$$

Net resistance of resistors connected in parallel

If resistors are combined in parallel they give a lower resistance than any one of the resistors by itself because the effect is the same as connecting a thick resistance wire. The resistance of a resistance wire decreases with an increase in thickness of the wire. Therefore, combined resistance is less than the resistance of the smallest individual resistor.

To find the combined resistance of the resistors connected in parallel:

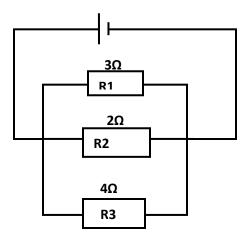


Figure 11.35 resistors connected in parallel

Voltage in parallel circuit is the same V.

The sum of the current in parallel circuit equals the current from the supply.

But
$$IT = I_1 + I_2 + I_3 \dots (i)$$

$$I = \frac{V}{R}$$

$$I_1 = \frac{V}{R1}$$

$$I_2 = \frac{V}{R2}$$

$$I_3 = \frac{V}{R3}$$

$$IT = \frac{V}{RT}$$

Substituting for the values of I in equation (i):

$$\frac{V}{RT} = \frac{V}{R1} + \frac{V}{R2} + \frac{V}{R3}$$

Dividing throughout by V, the equation becomes:

$$\frac{1}{RT} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$$

Therefore, the total resistance of resistors in parallel circuit is given by the formula:

$$\frac{1}{RT} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \dots \frac{1}{Rn}$$

For example: If the 3Ω , 2Ω and 4Ω resistors are connected in parallel circuit, the total (net) resistance can be worked out as follows:

$$\frac{1}{RT} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$$

$$\frac{1}{RT} = \frac{1}{3\Omega} + \frac{1}{2\Omega} + \frac{1}{4\Omega}$$

$$\frac{1}{RT} = \frac{4+6+3}{12}$$

$$\frac{1}{RT} = \frac{13}{12}$$

$$RT = \underline{12}$$

$$13$$

$$RT = 0.92\Omega$$

When two resistors are connected in parallel their effective resistance can be worked out using a formula:

RT = the product of their resistances

the sum of their resistances

$$RT = \frac{R1 \times R2}{R1 + R2}$$

For example: 2Ω and 4Ω resistors are connected in a parallel circuit as shown in

Figure 11.36 below:

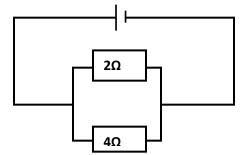


Figure 11.36

$$RT = \frac{R1 \times R2}{R1 + R2}$$

$$RT = \frac{2\Omega \times 4\Omega}{2\Omega + 4\Omega}$$
$$RT = \frac{8}{6}$$

 $\text{RT}=1.33\Omega$

Circuit problems

Worked examples

1. Calculate the total resistance in each of the following:

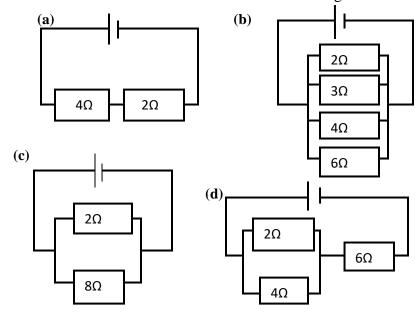


Figure 11.37

Solution

a. Resistors in series,

$$RT = R1 + R2$$

$$RT = 4\Omega + 2\Omega$$

$$RT = 6\Omega$$

b. Resistors in parallel circuit;

$$\frac{1}{RT} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \frac{1}{R4}$$

$$\frac{1}{RT} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$RT = 2\Omega - 3\Omega - 4\Omega - 6\Omega$$

$$1 = \frac{6+4+3+2}{RT}$$
 RT
$$12\Omega$$

$$\frac{1}{RT} = \frac{15}{12}$$

$$\frac{1}{RT} = \frac{12}{15}$$

$$RT = 0.8 \Omega$$

c. Two resistors in parallel,

$$RT = \frac{R1 \times R2}{R1 + R2}$$

$$RT = \underline{2\Omega \times 8\Omega}$$
$$2\Omega + 8\Omega$$

Therefore, $RT = 1.6 \Omega$

d. Two resistors in parallel and 1 resistor in series, RT in parallel and R in series

$$\begin{pmatrix} \underline{R1 \ R2} \\ R1 + R2 \end{pmatrix} + R$$

$$RT = \frac{R1 R2}{R1 + R2}$$

$$RT = \frac{2\Omega \times 4\Omega}{2\Omega + 4\Omega}$$

RT in parallel = 1.3Ω

Total resistance, RT in the circuit = RT in parallel + R = $1.3\Omega + 6\Omega$ RT in the circuit = **7.3** Ω

2. The resistor with unknown resistance is connected in parallel to an 8Ω resistor. Calculate the value of the unknown resistor if the effective resistance is 4Ω .

Solution

$$R1 = ?$$
 $R2 = 8\Omega$ $RT = 4\Omega$

$$RT = \frac{R1 \times R2}{R1 + R2}$$

$$4 \Omega = 8\Omega \times R1 \over R1 + 8\Omega$$

$$4 (R1 + 8) = 8 \times R1$$

$$4R1 + 32 = 8R1$$

$$32 = 8R1 - 4R1$$

$$32 = 4R1$$

$$R1 = 32$$

$$R1 = 8 \Omega$$

3. Figure 11.38 is a simple series circuit.

Calculate:

- a. The total current in the circuit.
- **b.** The voltage across a 2Ω resistor.

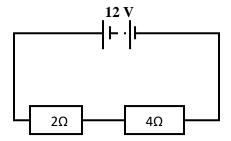


Figure 11.38

Solutions

a.
$$IT = V RT$$

$$V = 12V$$

$$RT = R1 + R2$$
$$= 2\Omega + 4\Omega$$

$$RT = 6\Omega$$

$$IT = \frac{12}{6\Omega}V$$

$$IT = 2A$$

b. V across a 2Ω resistor

V = IR

I = 2A (current is the same in series circuit)

 $R = 4\Omega$

 $V = 2A \times 4\Omega$

Therefore, V = 8V

4. A 2Ω and 4Ω resistors are connected in parallel and a 6Ω resistor is connected in series with them. A voltage across the battery is 12V.

Find:

- **a.** The total current in the circuit.
- **b.** The current in the 4Ω resistor.

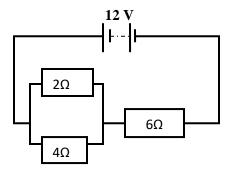


Figure 11.39

Solutions

a.
$$IT = V RT$$

$$V = 12V$$

$$RT = \left(\frac{R1 \times R2}{R1 + R2}\right) + R3$$

$$RT = \left(\frac{2 \times 4}{2 + 4}\right) + \epsilon$$

$$RT = 1.3 + 6$$

$$RT = 7.6\Omega$$

$$IT = \frac{12V}{7.6\Omega}$$

$$IT = 1.6A$$

b. I in the 4Ω resistor

First, let us find voltage across a 4Ω resistor

V across $(4\Omega \text{ and } 2\Omega) + V \text{ across } 6\Omega = 12V$

V across $6\Omega = ITR$

V across $6\Omega = 1.6A \times 6\Omega$

 $V \text{ across } 6\Omega \text{ resistor} = 9.6 \text{ V}$

V across a 4Ω resistor = 12 V - 9.6 V = 2.4 V

I in a 4Ω resistor = \underline{V}

R

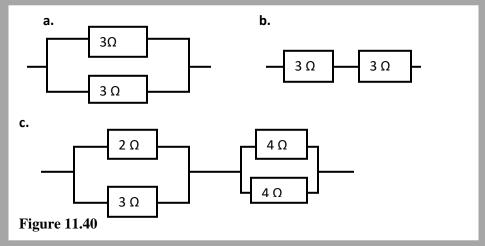
$$= \frac{2.4 \text{ V}}{4\Omega}$$

I in a 4Ω resistor = **0.6** A

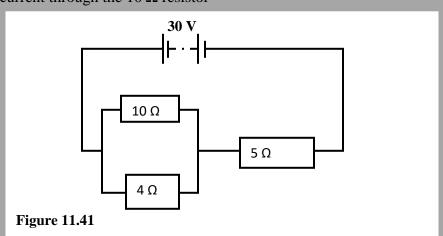
Exercise 11.6

In your groups, answer the following questions:

1. Calculate the combined resistance in each case:



- 2. In Figure 11.41, calculate:
- a. the current in the main circuit
- **b.** the p.d. across a 5 Ω resistor
- c. the current through the 10Ω resistor



11.5 Electric power and energy

Electric power

Power is the rate of doing work, or it is the electrical energy transferred per unit time, or it is the rate at which energy is produced.

In an electric circuit, power is provided by the cell or battery. Amount of power generated by a cell or battery is the product of voltage and current flowing in the circuit.

Electrical power = voltage x current
$$P = IV$$
(i)

Power dissipated in a resistor of resistance R

Since
$$P = IV$$

But $I = V \text{ (Ohm's law)}$
R

Substitute
$$\underline{V}$$
 for I in equation(i)

$$P = \frac{V \times V}{R}$$

Therefore,
$$P = \frac{V^2}{R}$$
.....(ii)

Therefore,
$$P = I^2R$$
.....(iii)

The three equations used for calculating electrical power are:

$$\mathbf{P} = \mathbf{VI}.....(i)$$

$$\mathbf{P} = \frac{\mathbf{V}^2}{\mathbf{R}}.....(ii)$$

$$\mathbf{P} = \mathbf{I}^2\mathbf{R}.....(iii)$$

Power is measured in watts. SI unit of power is the watt (w).

Other units of power are:

1 kilowatt (Kw) =
$$1000W = 10^3W$$

1 megawatt (Mw) = $1000000W = 10^6W$

Electrical power calculations

Worked examples

1. In an electric circuit, the pd across the battery is 3 V and the current supplied is 2 A. Calculate the power supplied by a battery in the circuit.

Solution

$$V = 3V$$
 $I = 2A$ $P = ?$
 $P = IV$
 $P = 2A \times 3V$
 $P = 6 W$

2. Find the resistance of a 60 W electric lamp if it uses 240V.

Solution

$$V = 240 \text{ V} \qquad P = 60 \text{ W} \qquad R = ?$$

$$P = \frac{V^2}{R}$$

$$R = \frac{V^2}{P}$$

$$R = \frac{240^2}{60}$$

$$R = 960 \Omega$$

3. Calculate the total power dissipated in the resistors shown in the diagram.

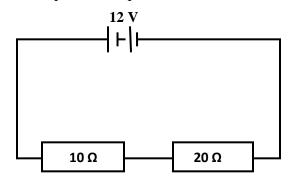


Figure 11.42

Solution

EITHER

$$V = 12V$$

$$RT = 10 \Omega + 20 \Omega = 30 \Omega$$

$$P = \frac{V^2}{RT}$$

$$P = \frac{12^2}{30}$$

$$P = 4.8 W$$

OR

$$\begin{aligned} V &= 12V & RT &= 30 \ \Omega \\ IT &= \ \ \ \frac{V}{RT} \end{aligned}$$

$$I = \frac{12V}{30 \Omega}$$
$$I = 0.4A$$

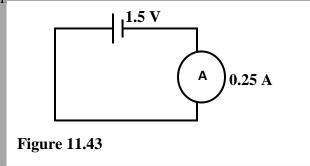
$$\begin{split} P &= I^2 R T \\ P &= 0.4^2 \; x \; 30 \; \Omega \end{split}$$

$$P=\textbf{4.8}\ \mathbf{W}$$

Exercise 11.7

In your groups, answer the following questions:

- 1. The power rating of a heating coil is 50 W. If a coil is connected to a supply of 240 V, calculate the resistance of the coil and the current through it.
- **2.** A current of 2 A flows through a 4 Ω resistor. What is the power dissipated across the resistor?
- **3.** In the circuit diagram shown in **Figure 11.43**, calculate the power supplied by a 1.5 V cell.



4. Elimat hair salon uses a hair dryer rated 240 V, 200 W. Explain the meaning of 240 V, 200 W.

Electric energy

Since power = $\frac{\text{Energy used}}{\text{Time taken}}$

$$P = \underline{E} \\ t$$

Therefore, energy = power x time

$$\mathbf{E} = \mathbf{P} \times \mathbf{t}$$

But $\mathbf{P} = \mathbf{IV}, \ \mathbf{P} = \mathbf{I}^{2}\mathbf{R}, \quad \mathbf{P} = \frac{\mathbf{V}}{\mathbf{R}}^{2}$

Therefore, electrical energy will have the following equations:

Energy is measured in **Joules** (J).

1 Kilojoule (KJ) =
$$1000J = 10^3J$$

Worked Examples

- 1. An electric bulb is rated at 100 W. Calculate the energy used by the bulb in
 - **a.** 5 seconds
 - **b.** 3 hours

Solution

$$P = 100 W$$
 $V = 220V$

a. Energy used in 5 s

$$t = 5$$

$$E = Pt$$

$$E = 100 \text{ w x 5 s}$$

$$E = 500 J$$

b. Energy used in 3 hrs

$$t = 3 \text{ hrs} = 10800 \text{ s}$$

$$E = p x t$$

$$E = 100 \text{ W} \text{ x } 10800 \text{ s}$$

$$E = 1080000 J \text{ or } 1.08^6 J \text{ or } 1080 KJ$$

2. Calculate the energy used by a resistor after 10 s

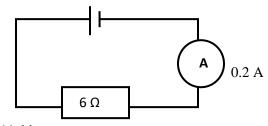


Figure 11.44

$$I = 0.2A$$
 $R = 6 \Omega$ $t = 10 s$
 $E = I^2 Rt$

$$E = 0.2^2 \text{ A x 6 } \Omega \text{ x 10 s}$$

 $E = 2.4 \text{ J}$

Cost of electricity

Electricity is supplied by the local Electricity Board. For example, in Malawi electricity is supplied by the Electricity Supply Corporation of Malawi Ltd (ESCOM). The Electricity board charges electricity in form of electrical energy used by appliances. The electrical energy is measured in kilowatt – hours by the electric energy meter.

Figure 11.45 Electricity board's meter

1 kilowatt – hour is sold as 1 unit of electrical energy.

A kilowatt hour or unit of electricity is the electrical energy supplied in 1 hour to an appliance whose power is 1kw.

Total cost of electricity = kilowatt - hours x cost per kilowatt - hour

Worked examples

1. An electrical appliance is rated at 200 W. If electrical energy costs K28.00 per kWh, what is the cost of using this heater for 8 hours at its maximum power?

Solution

$$P = 200 \text{ W} = 0.2 \text{ kW} \quad t = 8 \text{hrs}$$
 1 kWh = K28.00
Electrical energy = p x t = 0.2 kW x 8 h
= 1.6 kWh

Total cost of electricity = 1.6 kWh x K28.00 Total cost of electricity = **K44.80**

2. Figure 11.46 shows appliances used in a house

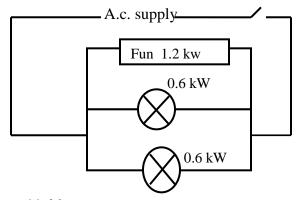


Figure 11.46

If electrical energy costs K27.90 per unit (1kWh), calculate the total cost of using a fan and two bulbs for three hours per day for one week.

Solution

Total power = 1.2 kW + 0.6 kW + 0.6 kW = 2.4 kW $t = 3 \text{ h} \times 7 = 21 \text{ hours}$ $E = p \times t$ Energy = $2.4 \text{ kW} \times 21 \text{ h}$ Energy = 50.4 kWhTotal cost = electrical energy x cost of 1 kWh = $50.4 \text{ kWh} \times \text{K27.90}$

 $Total\ cost = K1406.16$

Interpreting the electricity bill

Table 11.7 shows an electricity bill prepared by Magesi Electricity Supply Company of Malawi (MESCOM).

Table 11.7 An electricity bill

Magesi Electricity Supply Company of Malawi (MESCOM), P O Box 1340, Limbe.

Mr Grezo **A/C Number:** 200903775

P.O Box 55 Tariff : M11
Blantyre Reference: : 104

Electricity account covering period of approximately one month preceding date of meter reading

DATE	DETAILS OF TRANSACTIONS	AMOUNT (MKW)	BALANCE (MKW)
01/06	Balance brought forward		10 317.54
10/06	Receipts		10 000.00-
	Previous Current consumption		
30/06	46523 46839 316.00	8 848.00	
SURTAX	16.50% on 8 848.00	1 459.92	
	Total current bill	10 307.92	10 307.92
The monthly total is for JUNE 2014 and is payable 15/07/2014			
AMOUNT DUE			

10 625.46

From the bill in table 11.7:

Units used by Mr Grezo = The difference in meter readings in kWh

=46839-46523

Units used = 316.00 kWh

If 1 kWh = K29.00

Cost for 316.00 kWh = 316.00 x K 29.00 = K8 848.00

SURTAX= 16.50% of K8 848.00

$$= \frac{16.50}{100} \times K8 848.00$$

SURTAX = K1 459.92

Mr Grezo's total monthly bill = K8848.00 + K1459.92 = K10307.92

Mr Grezo's amount due = (Total monthly bill + previous month's balance) – amount paid

Mr Grezo's amount due = $(K10\ 307.92 + K10\ 317.54) - K10\ 000$

Mr Grezo's amount due for the month of June = K10 625.46

Power of the heating element

The current has the heating effect when it flows through a resistive material e.g. a coil of an electric heater or cooker. The power of the heating element can be found in the following formulas:

$$\mathbf{P} = \mathbf{VI}.....(i)$$

$$\mathbf{P} = \frac{\mathbf{V}^2}{\mathbf{R}}.....(ii)$$

$$\mathbf{P} = \mathbf{I}^2\mathbf{R}.....(iii)$$

Worked example

An electric cooker is connected to a 240 V mains. If the resistance of its coils is 15Ω , calculate its power rating.

Solution

$$V = 240 \text{ V}$$
 $R = 15\Omega$
 $P = \frac{V^2}{R}$
 $= \frac{240^2}{15}$
 $P = 3840 \text{ W}$ or 3.840 kW

Heating elements work under different currents and voltages. Hence, they have different power ratings.

Energy transfer

The electrical energy in heating elements is released as heat energy. Therefore, heat energy lost from a heating element is gained by the surrounding material, e.g. electric heater. In this case, we say electric current has a heating effect. This is noticed by an increase in temperature.

If there is no energy loss then,

Electrical energy = Heat energy

Electrical energy = power x time

$$E = p x t$$

Heat energy = mass x specific heat capacity x change in temperature

$$HE = m \times c \times \Delta T$$

The equations can be related as follows:

Worked example

The immersion heater is used to heat water in a bath. If a heater rated at 3.6W is connected to 240V main supply, calculate

- **a.** The resistance of the heating element.
- **b.** The time taken for 2 kg of water in a bath to raise its temperature from 20° C to 25° C. (SHC of water is $4200J/kg^{\circ}$ C).

Solution

a. Resistance of the heating element

$$P = 3.6 \text{ kW}$$
 = 3600 W
V = 240 V

$$P = \frac{V^2}{R}$$

$$R = \frac{V^2}{P}$$

$$R = \underline{240^2}$$

$$3600$$

$$R = \mathbf{16} \Omega$$

b. Time taken for 2 kg of water to raise its temperature from 20^oC to 25^oC

$$P = 3600 \text{ W}$$
 $\Delta t = (25^{\circ}\text{C} - 20^{\circ}\text{C}) = 5^{0}\text{C}$ $m = 2 \text{ kg}$ $c = 4 \ 200/\text{kg}^{\circ}\text{C}$

$$Pt = m \times c \times \Delta T$$

$$3600 x t = 2 x 5 x 4200$$

$$t = 2 x 5 x 4200$$

$$3600$$

$$t = 11.7 s$$

Exercise 11.8

In your groups, answer the following questions:

- **1.** A 1.5 kW refrigerator is switched on for 5 hours. Calculate the electrical energy in the fan in joules.
- **2.** A heating coil is connected to a 240 V supply and a current of 10 A flows in it. If the coil is used to heat 0.1 kg of water in 100 s, calculate the temperature increase of water.
- **3.** If electrical energy costs K28.00 per unit, calculate the cost of:
- **a.** leaving a 5kW heater witched on for 6 hours.
- **b.** leaving a 100 W bulb switched on for 1 day.
- **4.** An immersion heater rated 2200 W is used to change the temperature of water from 25°C to 80°C in 1 hour. Calculate the mass of water heated. (Specific heat capacity of water is 4200 J/kg°C.

The electrical hazards

Although electricity is very useful, it can be dangerous when it is not used safely. Therefore, electricity can be hazardous.

The major hazards associated with electricity are:

1. Electric shock

An electric shock is the passing of electric current through the body. The body becomes part of the electric circuit.

An electric shock can happen in the following situations:

- **a.** When the body comes into contact with both wires (live and neutral wires) of an electric circuit.
- **b.** When the body comes into contact with a metallic part that has become live (energized) through contact with an electrical conductor.

Electric shock depends on a number of factors such as the pathway through the body, the amount of current, the length of time of the exposure, wetness of the skin and presence of water (if the area is damp or dry).

The effect of electric shock may range from a slight tingle to severe burns or to cardiac arrest. **Table 11.8** shows the general relationship between the degree of injury and amount of current.

Table 11.8 relationship between the degree of injury and the amount of current

Amount of current (mA)	Degree of injury
1	Perception level
5	Slight shock felt, not painful but disturbing
6-30	Painful shock
50-150	Extreme pain, respiratory arrest, sense muscular
	contraction
1000- 4300	Ventricular fibrillation
10000+	Cardiac arrest, severe burns and probable death

2. Overheating and fire

When high current flows through the cable or appliance, there will be overheating and fire. High currents can be caused in the following ways:

a. Short circuit

A **short circuit** is the accidental touching of a live wire and a neutral wire.

At the point of short circuit, the resistance becomes very low. This allows high current to flow through the circuit. The high current can cause overheating and fire.

b. Overloading

Overloading happens when a lot of appliances are connected on one surface and all the appliances are switched on at the same time e.g. on an extension. The appliances take more current to the surface. This high current can cause overheating and fire.

Preventing electrical hazards

There are various ways of protecting people from the hazards caused by electricity.

Basic precautions

Follow some basic precautions as listed below:

- Inspect wiring of equipment before each use. Replace damaged or frayed electrical cords immediately.
- Use safe work practices every time electrical equipment is used.
- Know the location and how to operate switches or circuit breakers. Use these devices (switch or circuit breaker) to shut off equipment in the event of a fire or electrocution.
- Limit the use of extension cords; use them only for temporary operations.
- Use plugs that are equipped with circuit breakers or fuses.
- Place exposed electrical conductors behind the shields.
- Minimise the potential for water or chemical spills on or near electrical equipment. All electrical cords should have sufficient insulation to prevent direct contact with wires. It is very important to check all cords before each use, since corrosive chemicals or solvent vapours may corrode the insulation.

Circuit protection devices

Circuit protection devices are designed to automatically limit or shut off the flow of electricity in the event of a ground-fault, overloading or short circuit in the wiring system. The circuit protection devices are fuses and circuit breakers.

Fuses and circuit breakers prevent overheating of wires and components.

Fuse: A fuse is used to control the amount of current flowing in the circuit. If there is high current flowing in the circuit by accident, the fuse melts. This breaks the circuit and stops the flow of current. Hence the wire and the appliances are protected from high current, overheating and fire.

Symbol for a fuse

A fuse is found in a three-pin plug.

Three-pin plug

A three-pin plug is used to connect appliances to the mains. Three-pin plugs are used because they are safe since they have a fuse.

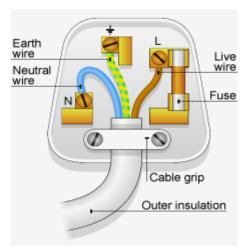


Figure 11.47 three-pin plug

Live wire

- A live wire carries ac current and voltage to the appliance
- It has alternating voltage that moves to +240V then to -240V, making the alternating current which flows backwards and forwards through the circuit.
- It gives electrical shock when touched.

Neutral wire

- A neutral wire acts as a returning path of ac current and voltage.
- It has a potential difference of O V
- It does not give an electrical shock when touched.

Earth wire

- It is a safety wire; it prevents users from getting electrical shock.
- An earth wire is grounded at one end and connected to a metallic part of an appliance at the other end. When faulty current flows, a metallic appliance becomes live. The earth wire conducts the faulty current to the ground. Hence preventing users from electric shock.

Fuse

A fuse is a safety device that prevents cables and appliances from carrying high current. High current flowing in cables or appliances can cause overheating and fire.

When the current flowing in a cable or appliance is more than required amount, the fuse melts and breaks the circuit.

It is connected to the live wire, since it is the live wire that carries current.

Fuse rating

Fuse rating is the maximum amount of current that a fuse can allow to pass through before it melts.

To find fuse rating of a fuse:

```
Fuse rating = <u>power supplied</u>
Voltage from the supply
```

Worked example

An appliance rated at 60 W, uses a voltage of 35 V. Calculate the fuse rating of an appliance.

Fuse rating =
$$\frac{\text{Power}}{\text{Voltage}} = \frac{60 \text{ W}}{35 \text{ V}}$$

Fuse rating =
$$1.7 A$$

But the value of the fuse rating should not be exactly 1.7 A. There must be an allowance to allow maximum current to flow.

Circuit breaker: This is an automatic switch which if the current rises over a specified value, the electromagnet pulls the contacts apart, thereby breaking the circuit. The reset button is to rest everything. It works like a fuse, but it is better because it can be reset.

Exercise 11.8

In your groups, answer the following questions:

- **1.** Explain how each of the following can cause electrical hazards:
- a. Damp condition
- b. High current
- c. Damaged insulation
- **2.** Explain how a fuse works.
- 3. In a three-pin plug, which wire
- a. has a blue covering
- **b.** has a yellow and green covering
- **c.** is a safety wire?
- **4.** What is the function of a circuit breaker?

Summary

An electric current is the flow of electric charges (electrons) from the negative side of an electric field to the positive side.

The SI unit of electric current is Ampere (A).

An electric current is also defined as the rate at which electric charge flows.

$$I = \underline{\mathbf{Q}}$$

Potential difference is the difference in potential between two points, equal to the energy change when a unit electric charge moves from one place to another in an electric field. The SI unit of potential difference is the Volt (V).

Electromotive force (EMF) is the maximum potential difference across a cell or battery when it is not in a circuit and not supplying current (when I= 0 A).

Electrical resistance is the opposition to the flow of electrons in a wire or a circuit. The SI unit of electrical resistance is Ohm (Ω) .

Factors that affect electrical resistance of a wire are length of a wire, temperature, cross sectional area and nature of the material.

The total resistance of the resistors in series is found as:

$$RT = R1 + R2 + R3 +Rn$$

The total resistance of the resistors in parallel is found as:

$$\frac{1}{RT} = \frac{1}{R1} \quad \frac{1}{R2} \quad \frac{1}{R3} \quad \frac{1}{R4}$$

Electric power is the rate at which electrical energy is transferred.

$$P = \frac{E}{t}$$

$$P = VI, P = I^{2}R, P = \frac{V^{2}}{R}$$

Electrical energy = power x time

$$E = P x t$$
, $E = VIt$, $E = I^2Rt$ $E = \frac{V^2t}{R}$

Electrical hazards are electric shocks, overheating and fire.

Student assessment

- 1. Define
 - a. Electric current.
 - **b.** Electric resistance.
- **2.** A charge of 100 C flows in the circuit for 2 hours. Calculate the amount of current flowing in the circuit.
- **3.** State Ohm's law.
- **4.** Describe the experiment that you would carry out to verify Ohm's law.
- **5.** To verify Ohm's law for a piece of metal wire, a student obtained and came up with the following data.

Table 11.8

Voltage(V)	1.5	1.8	2.1	2.4	2.7	3
Current(A)	0.75	0.9	1.05	1.2	1.35	1.5

- **a.** Plot a graph of voltage against current.
- **b.** Using your graph find the voltage when current is 1A.
- **c.** If the wire obeys ohm's law, what do you notice about the values (V/A) in a graph?
- **6.** State the difference between potential difference (PD) and electromotive force (Emf).
- 7. In each of the following circuits, find the total or effective resistance.

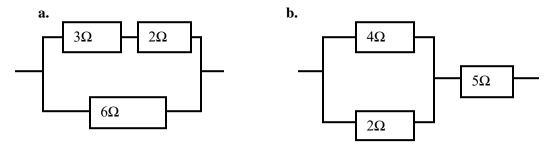


Figure 11.48

- **8.** In **Figure 11.49**, calculate:
 - **a.** The total current in the circuit.

b. Voltage across a 3Ω resistor.

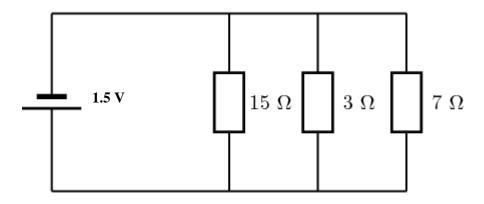
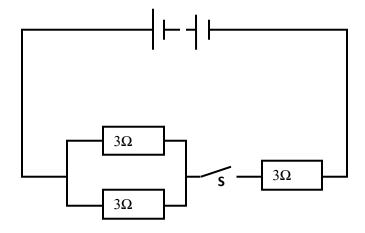


Figure 11.49

9. Figure 11.50 below is a diagram of an electric circuit.



- **a.** Calculate the total resistance under the following conditions:
 - i. S open
 - ii. S closed
- **b.** Calculate the total current in the circuit under the following conditions:
 - i. S open
 - ii. S closed
- **10.** Define colour coding.
- 11. Explain why colour coding is used in resistors found in electronic appliances.
- **12. Figure 11.51** below shows a resistor. Use it to answer the questions that follow.

- **a.** Work out the resistance of a resistor.
- **b.** If a resistor is connected in the circuit which operates from a supply of 240V, what current will flow in the circuit?
- **13.** Describe the experiment that you would carry out to show that electrical resistance of a wire varies directly proportional to its length.
- **14.** Define electrical power.
- **15.** The power rating of a heating coil is 50 W. If a coil is connected to a supply of 240 V. Calculate the resistance of the coil.
- **16.** A current of 2A flows through a 4 Ω resistor. What is the power dissipated across the resistor?
- **17.** In the circuit diagram shown in **Figure 11.52**, calculate the power supplied by a 3 V battery.

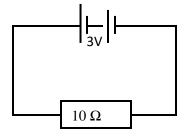


Figure 11.52

- **18.** Explain why it is encouraged to transmit power at very high voltage and very low current.
- **19.** A 2kW power is fed to a transmission cable of resistance 2 ohms. How much power is wasted in the cable if power is transmitted at a current of
 - **a.** 3A?
 - **b.** 1A?

- **20.** An electric fuse is designed to operate at 10 A from a 240 V supply. Calculate the electrical energy supplied to a heater in 2 hours.
- 21. A heating coil is immersed in 0.5 Kg of water. The coil is connected to a 15 V supply and a current of 2 A flows for 140 seconds. Calculate the temperature increase of water (SHC of water = $4200J/Kg^{0}C$).
- 22. The following appliances are connected in a house.

Item	Power
Fan	2.2Kw
Refrigerator	200W
Bulb	100W
Cooker	3KW

- **a.** Calculate the total power taken from the supply if all items are running.
- **b.** The appliances are connected to a 240V supply. Find
 - i. current in a bulb
 - ii. Resistance in coils of a cooker.
- **c.** If the cost of electricity is K27.00 per kWh,
 - **i.** Define a kilowatt-hour.
 - **ii.** Calculate the total cost of running all the items for 5 hours.
- 23. Explain how you can relate electrical energy and heat energy.
- **24. Figure 11.53** below shows the inside of an electric plug. Use it to answer the questions that follow.

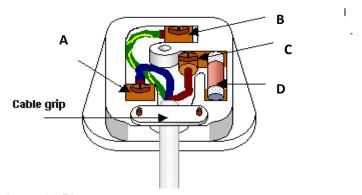


Figure 11.53

- **a.** Name the parts labeled A, B, C and D.
- **b.** State the functions of parts A, B, C and D.
- **c.** If the three-pin plug is used for a 240V, 2 kW appliance, work out the fuse rating of the fuse in the plug.

Oscillations and waves

Objectives

At the end of chapter 12, you must be able to:

- Explain oscillation in relation to a pendulum or hanging mass on a spring
- Describe a wave
- Differentiate between a transverse wave and longitudinal wave
- Describe wave properties
- Apply the wave equation in solving problems

12.1 Oscillations or Vibrations

Oscillations or vibrations are complete upward or downward movements of an object about its fixed position (rest position or equilibrium position).

Oscillations or vibrations can also be defined as complete to and fro movements of an object about its fixed position (rest position or equilibrium position).

Oscillations are produced by the vibrating systems.

Examples of vibrating systems are vibrating spring, pendulum and cantilever.

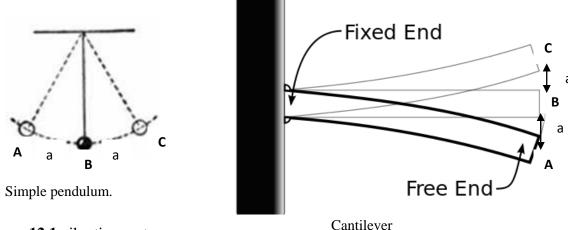


Figure 12.1 vibrating systems **Kev**

a is the amplitude.

A and **C** are the extreme positions of swing or oscillation (vibration).

B is the equilibrium or rest position.

Characteristics of oscillating systems

Oscillating systems have the following characteristics:

Amplitude (a) is the maximum displacement of an oscillating system from its resting position. In **Figure 12.1**, amplitude is the distance between **A** and **B** or distance between **B** and **C**. Amplitude is measured in metres (m) or centimeters (cm).

Displacement is the direction and distance from mean position. Displacement is measured in metres (m) or centimeters (cm).

Period (**T**) is the time taken for one complete oscillation or cycle to be performed. Period (T) is measured in seconds (s).

Frequency (**f**) is the number of complete oscillations or cycles produced in a unit time. A cycle is a complete oscillation when an oscillating system moves from a starting point **A** to **C** then back to **A** or moves from **C** to **A** then back to **C**. Frequency is measured in hertz (Hz) or cycles per second 1 cycle per second = 1 hertz

Factors affecting frequency of an oscillating system

1. For a pendulum

Experiment 12.1

AIM: To find out whether the frequency of vibration of a pendulum depends on the length of the string.

MATERIALS: A string, 50g bob, clamp stand, stop watch and ruler.

PROCEDURE:

1. Arrange the apparatus as shown below.

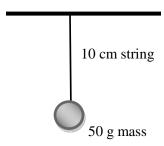


Figure 12.2

- 2. Pull the mass and release it to oscillate.
- **3.** Record the time taken for 10 oscillations.
- **4.** Record the results in **Table12.1**.
- **5.** Repeat the experiment with length 20 cm, 30 cm, 40 cm and 50 cm.

Table 12.1

Length of a string	Time for	Frequency = 10 oscillations
(cm)	10 oscillations(s)	Time (s)
10		
20		
30		
40		
50		

DISCUSSION

- 1. Calculate the frequency for each length of a string.
- **2.** Plot a graph of frequency against length of a string.
- **3.** From your results and the graph, what can you conclude?
- **4.** Other variables are kept constant.
- a. Explain what this means.
- **b.** State **two** variables that can be kept constant.

SUGGESTED RESULTS/EXPLANATIONS

- 1. Use the time found for 10 oscillations to calculate the frequency for each length of a string using the formula given in the table.
- 2. After calculating frequencies, the graph will have a shape as shown in the sketch in **Figure 12.3.**

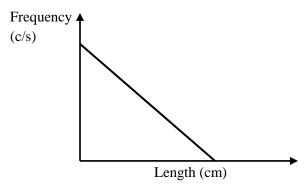


Figure 12.3

- **3.** Frequency decreases as the length increases and vice versa. As the length increases, the string will take longer time to complete the 10 oscillations. Hence low frequency.
- 4. a. Other variables are not changed.
 - **b**. mass of the bob and type of the string

2. For a loaded spring

Experiment 12.2

AIM: To find out whether the mass affects the frequency of oscillation of a spring. **MATERIALS:** Masses (50g, 100g, 150g and 200g), g-clamp, a stop watch and a spring. **PROCEDURE:**

1. Set up the apparatus as shown in Figure 12.4:

Figure 12.4

- 2. Pull the mass downwards and leave it to vibrate freely.
- **3.** Recording the time taken for 10 complete vibrations.
- **4.** Calculate the frequency.
- **5.** Repeat the experiment for the rest of masses (100g, 150g and 200g).
- **6.** Record the results in **Table 12.2** below:

Table 12.2

Mass (g)	Time for 10 vibrations (s)	Frequency = <u>10 vibrations</u> Time(s)
50 100		
150		
200		

DISCUSSION

- **1.** Plot a graph of frequency against mass.
- **2.** Using the graph, determine how the mass affects the frequency.

3. For a cantilever

Experiment 12.3

AIM: To find out whether the mass on the cantilever affects its frequency.

MATERIALS: Masses (50g, 100g, 150g and 200g), g-clamp, a stop watch and a cantilever.

PROCEDURE:

1. Set up the apparatus as shown in **Figure 12.5** below:

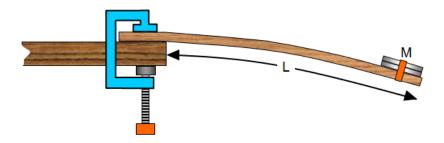


Figure 12.5

- 2. Pull the mass downwards and leave it to vibrate freely.
- **3.** Recording the time taken for 10 complete vibrations.
- **4.** Calculate the frequency.
- **5.** Repeat the experiment for the rest of masses (100g, 150g and 200g) with a fixed length, L.
- **6.** Record the results in **Table 12.3**.

Table 12.3

Mass (g)	Time for 10 vibrations (s)	$Frequency = \frac{10 \text{ vibrations}}{Time(s)}$
50		
100		
150		
200		

DISCUSSION

- 1. Plot a graph of frequency against mass.
- 2. Using the graph, determine how the mass affects the frequency.

Experiment 12.4

AIM: To find out whether the length of the cantilever affects its frequency.

MATERIALS: Mass, a metre rule (cantilever), g-clamp and a stop watch.

PROCEDURE:

1. Set up the apparatus as shown in Figure 12.6 below:

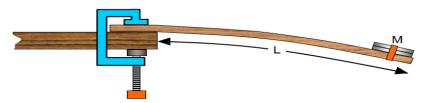


Figure 12.6

- **2.** Pull the mass downwards and leave it to vibrate freely.
- **3.** Recording the time taken for 10 complete vibrations.
- **4.** Calculate the frequency.
- **5.** Repeat the experiment by adjusting the length of the rule to 80 cm, 60 cm and 40 cm with a fixed mass, M.
- **6.** Record the results in **Table 12.4** below:

Table 12.4

1 4010 12.4		
Length (cm)	Time for 10 vibrations (s)	Frequency = 10 vibrations
		Time(s)
100		
80		
60		
40		

DISCUSSION

- **3.** Plot a graph of frequency against length.
- **4.** Using the graph, determine how the length affects the frequency.

Exercise 12.1

In your groups, answer the following questions:

- **1.** Define amplitude.
- 2. Explain why the amplitude of a vibrating spring decreases with increase in time.

12.2 Waves

Oscillations or vibrations produce a wave. A wave is commonly taken as movement. We have waves on the surface of the ocean or lakes and waves in the wind.

A wave is a means of disturbance or oscillation that travels through a medium or vacuum, accompanied by a transfer of energy.

A wave motion is the transmission of energy from one place to another through a material or vacuum.

Experiment 12.5

AIM: To produce a wave.

MATERIALS: A tree and a rope.

PROCEDURE:

1. Tie a rope to the tree as shown in Figure 12.7.

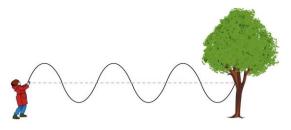


Figure 12.7

2. Jerk the rope at the other end.

RESULT

When you jerk a rope from the other end, humps and hollows are formed. These humps and hollows form a wave as shown in **Figure 12.8**.

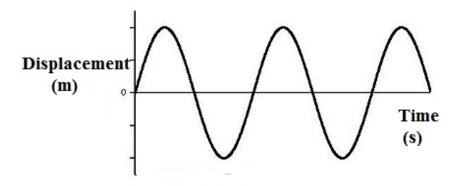


Figure 12.8 A wave

Experiment 12.6

AIM: To investigate water waves.

MATERIALS: Transparent tray (ripple tank), water and pencil (or vibrator).

PROCEDURE:

- 1. Fill a shallow tray (ripple tank) with water.
- **2.** Move a pencil up and down in the water at one end of the tank or let a vibrator just touch the surface of the water and switch it on. Record the observations.

RESULT

When a pencil is moved up and down in the water at one end of the tray (ripple tank) or when a vibrator touching the water is switched on ripples move away from the disturbance caused by the pencil or vibrator. The ripples form a wave like the one shown in **Figure 12.6.**

Waves can be grouped into mechanical and electromagnetic waves.

Mechanical waves are the waves that require a medium for propagation. They cannot pass through a vacuum. Examples of mechanical waves are sound wave and water wave.

Electromagnetic waves are the waves that do not need a medium for propagation. Electromagnetic waves can pass through a vacuum. Examples of electromagnetic waves are radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, x-rays and gamma rays.

Characteristics of a wave

A wave has the following characteristics.

1. Amplitude (a)

Wave amplitude is the maximum displacement of a particle from its resting position. It is measured in centimetres (cm) or metres (m).

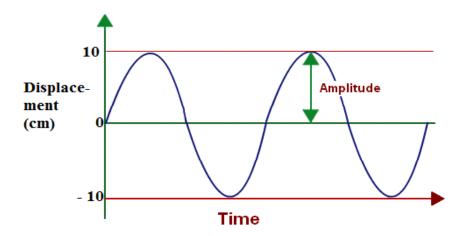


Figure 12.9 Showing amplitude of a wave

From **Figure 12.9** the amplitude of the wave is 10 cm.

2. Frequency (f)

Wave frequency is the number of complete oscillations or cycles produced per second.

Frequency is measured in **hertz** (**Hz**) or c/s.

$$1 \text{ c/s} = 1 \text{ Hz}$$

For example: If the rope makes 10 complete cycles in 5 seconds,

Frequency (f)
$$= 2Hz$$

3. Period (T)

Wave period is the time taken for one complete oscillation or cycle to be performed.

Period (T) =
$$\frac{\text{Time taken}}{\text{Number of complete cycles}}$$

From the equation shown above, period (T) is the inverse of frequency (f). Therefore,

$$T = \underline{1}$$

Hence
$$\mathbf{f} = \mathbf{\underline{1}}$$

Worked example

Figure 12.10 is a diagram showing a wave motion.

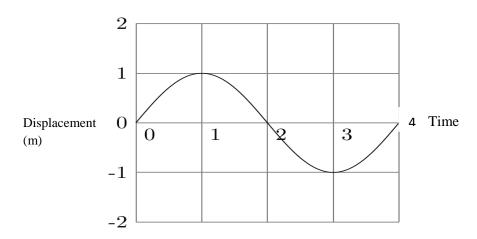


Figure 12.10

- **a.** Calculate the amplitude of the wave.
- **b.** Calculate the frequency of the wave.
- **c.** What is the period of the wave?

Solution

a. Amplitude = 1 m

b. Frequency = $\frac{\text{Number of complete cycles}}{\text{Time taken}}$

Frequency =
$$\frac{1 \text{ cycle}}{4 \text{ seconds}}$$

Frequency = **0.25 Hz**

c. Period (T) =
$$\frac{1}{f}$$

T = $\frac{1}{0.25}$ Hz
T = 4 seconds

4. Wavelength (λ)

Wavelength is the distance between two successive particles which are at the same point after a complete oscillation in their paths and are moving in the same direction. These are the distances occupied by one complete oscillation.

Wavelength is represented by a Greek symbol called **Lambda** (λ).

Wavelength is measured in metres (m).

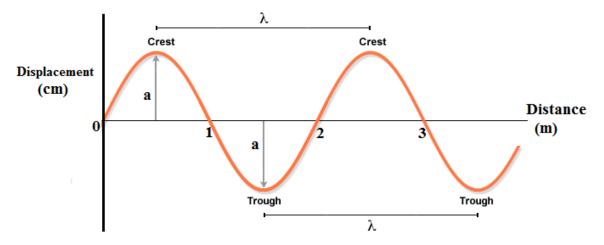


Figure 12.11 showing the wave length of the wave

The wavelength of a wave can be found by the following methods:

a. Checking the distance covered by one complete cycle. Wavelength = distance covered by one complete cycle

In **Figure 12.11**, the distance covered by one complete cycle is 2 m. Therefore, the wavelength of a wave is 2 m.

b. Wavelength = $\underline{\text{Total distance covered by the wave}}$ Number of cycles

Worked example

Calculate the wavelength of a wave in Figure 12.12.

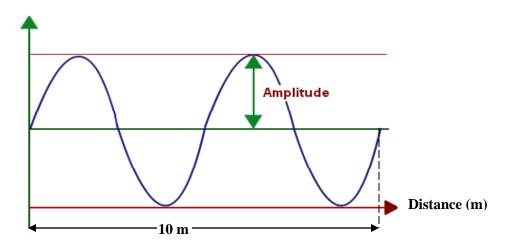


Figure 12.12

 $Wavelength = \underline{Total\ distance\ covered}$

Number of cycles

Wavelength = 10 m

2 cycles

Wavelength = 5 m.

5. Velocity

Wave velocity (speed) is the distance covered by the wave in a unit time.

Velocity = <u>distance covered by the wave</u>

Time taken

Worked example

A water wave covered a distance of 50 m in 10 seconds. Calculate its velocity.

Solution

d = 50 m t = 10 s

$$v = d$$

$$t$$

$$v = 50 \text{ m}$$

$$10 \text{ s}$$

$$v = 5 \text{ m/s}$$

6. Phase

Wave phase is the orientation of wave pulses in space with respect to the origin of the wave.

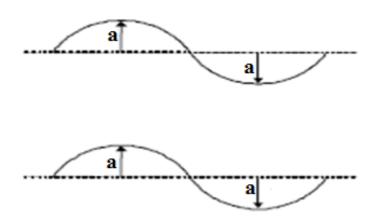


Figure 12.13(a) the waves are in phase

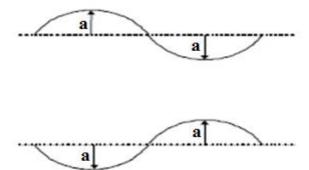


Figure 12.13 (b) the waves are out of phase

Wave front

A wave front is any line or section taken through an advancing wave which joins all points which are in the same position in their oscillations. Wave fronts are usually at right angles to the direction of the waves and can have any shape, e.g. circular and straight wave fronts.

Circular wave front can be produced by dropping a spherical object in water. The spherical object causes disturbance in water. Water forms circular patterns called **circular wave front**.

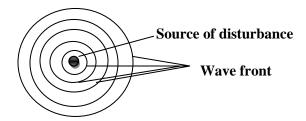


Figure 12.14 circular wave front

Straight wave front can be produced by dipping a straight edge in water. The straight edge causes disturbance in water. Water produces straight wave fronts.

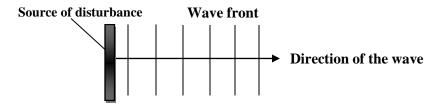
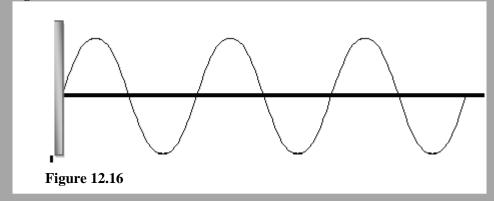


Figure 12.15 straight wave front

Exercise 12.2

In your groups, answer the following questions:

1. Figure 12.16 shows a wave.



- **a.** On the diagram, label the following:
- i. Amplitude (a) ii. Wavelength (λ)
- **b.** Calculate the wavelength of the wave.
- 2. The frequency of a wave is 200 Hz. Calculate the period (T) of a wave.
- **3.** A straight wave front is produced by a vibrator in a ripple tank.
- **a.** What is the wavelength of the ripples if there are 10 complete waves in a distance of 50 cm?
- **b.** Calculate the frequency of the ripples if 10 complete waves were produced in a minute.

12.3 Types of waves

The two basic types of waves are longitudinal wave and transverse wave.

Longitudinal waves

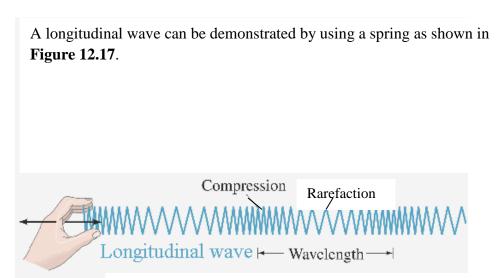


Figure 12.17 demonstrating longitudinal wave in a spring

When the end of a spring is moved backwards and forwards, the sections of the coil are pulled together and released. These sections are known as **compressions** and **rarefactions**. This produces a travelling wave effect. In this wave oscillations are backwards and forwards. The wave is called **longitudinal wave.**

A **longitudinal wave** is a wave in which the direction of the vibrating particles (oscillations) is the same as the direction of a wave itself OR it is a wave in which the displacements are parallel to the direction of a wave itself.

Compressions: These are regions of high pressure and density along a longitudinal wave where particles are squeezed.

Rarefactions: These are regions of low pressure and density along a longitudinal wave where particles are spaced.

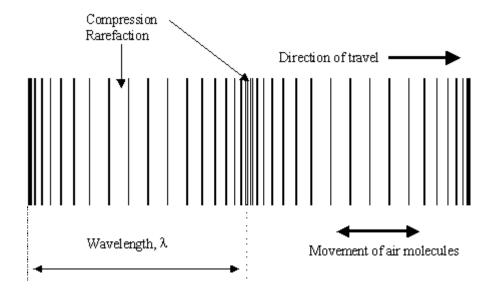


Figure 12.18 longitudinal wave

An example of a longitudinal wave is a sound wave.

Transverse waves

A transverse wave can be demonstrated by a spring as shown in Figure 12.19.



Sideways movements are passed from turn to turn and a traveling wave effect is produced. In this way, there is a transferring of energy from one end of the string to the other.

When the oscillations are up and down or from side to side as shown in **Figure 12.19**, the wave produced is called **Transverse Wave**.

In a transverse wave the oscillations are perpendicular (at right angles) to the direction of the wave itself.

A **transverse wave** is a wave in which direction of vibrations or oscillations is perpendicular (at right angle) to the direction of propagation of the wave.

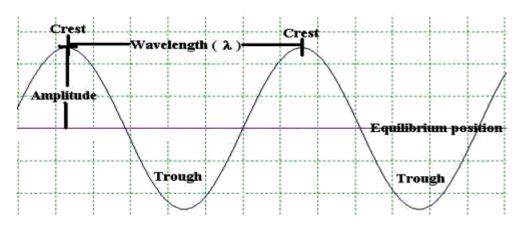


Figure 12.20 a transverse wave

Crests or **peaks:** These are points where a wave causes maximum positive displacement of the medium.

Troughs: These are points where a wave causes maximum negative displacement of the medium.

Examples of transverse waves are water wave and light wave.

NOTE: In a longitudinal wave the **wavelength** can be defined as the distance between two successive compressions or the distance between two successive rarefactions.

In a transverse wave the **wavelength** can be defined as the distance between two successive crests or the distance between two successive troughs.

Exercise 12.3

In your groups, answer the following questions:

- 1. Define
- a. Compression b. Rarefaction c. Crest d. Trough
- **2.** With the aid of well labeled diagrams, discuss the differences between transverse and longitudinal waves.
- 3. Explain how you can demonstrate transverse and longitudinal waves.

12.4 Wave properties

Waves have the following properties:

a. Reflection

Experiment 12.7

AIM: To investigate wave reflection.

MATERIALS: Ripple tank, water and vibrator.

PROCEDURE:

- **1.** Fill a shallow ripple tank with water.
- 2. Let a vibrator just touch the surface of the water and switch it on to create waves moving down the tank.
- **3.** Place a horizontal metal strip at an angle to the direction of the wave. Record what happens to the wave.

When an obstacle is placed in the path of the wave it changes its direction. The wave is bounced off. This effect is called **reflection**.

Reflection is defined as the bouncing off of waves when an obstacle is placed in their path.

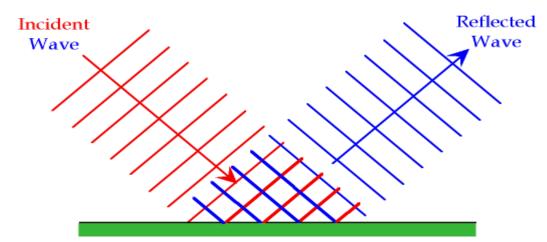


Figure 12.21 Reflection in a water wave

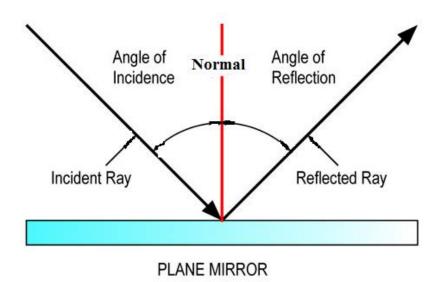


Figure 12.22 Reflection in a light wave

The laws of reflection

i. The angle of incidence is equal to the angle of reflection.
 This means that the wave leaves the surface at the same angle it arrives.
 Angle of incidence (i) = angle of reflection (r).

ii. The incident ray, the normal and the reflected ray all lie in the same plane. This means that all three could be drawn on the same flat piece of paper.

b. Refraction

Experiment 12.8

AIM: To investigate wave refraction.

MATERIALS: Ripple tank, water, vibrator and glass or plastic sheet.

PROCEDURE:

- 1. Set up a ripple tank with a piece of material that will create a shallow section in the tank.
- 2. Let a vibrator just touch the surface of the water in a deep region and switch it on to create waves that will travel down the tank from "deeper" end and across the shallow section.
- **3.** Record the observations.

In **Experiment 12.8,** water waves are made to travel from a deeper region to a shallow region. In this case, the following happens:

- **i.** The wavelength decreases. In a deep region, a wavelength is greater because of high speed while in a shallow region the wavelength is shorter because of the decrease in speed.
 - ii. The wave appears to change direction. The wave changes direction because it changes speed when traveling from a deep region to a shallow region. In a deep region, the wave travels faster and it slows down when it enters the shallow region. This apparent bending of the wave is called **refraction**.

In both regions, the frequency remains the same.

Refraction is the bending of a wave when it changes its speed or velocity.

Water waves undergo refraction or bending when they enter shallow water.

In shallow water the water waves are slowed down. In shallow water, the wave length of a water wave is reduced.

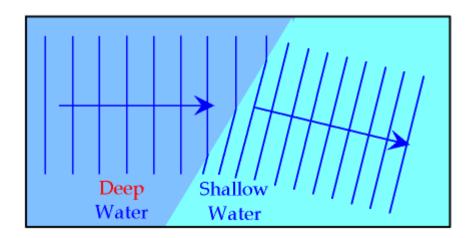


Figure 12.23 Refraction of a water wave.

A light wave undergoes refraction when it moves into a medium of different density which causes it to travel at a different speed or velocity.

When a ray of light travels from a less dense medium (e.g. air) to a denser medium (e.g. glass) it bends towards the normal because it travels with less speed in the denser medium.

When the ray of light travels from a denser medium (e.g. glass) to a less dense medium (e.g. air) it bends away from the normal because it travels with greater speed in the less dense medium.

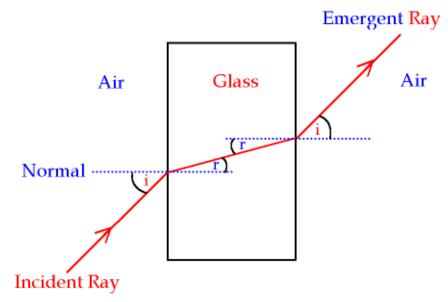


Figure 12.24 Refraction of a light wave

i = angle of incidence r = angle of reflection

Laws of refraction

- i. The incident and refracted rays are on opposite sides of the normal at the point of incidence.
- ii. When it comes to the incident ray, the normal and the refracted ray lie in the same plane.
- **iii.** The value of angle of the ratio of the angle of incidence to the angle of refraction is the same for light passing from one given medium into another. For example, dividing sine i by sin r, when the ray of light passes from air into glass, always produces the same number whatever the angle of incidence is.

$$\frac{\sin i}{\sin r}$$
 = constant

This constant is called **refractive index**. **Refractive index**, when referring to light, is the light-bending ability of a medium. For example, light bends more in glass than in water. This is also known as the **optical density**.

$$\frac{\sin i}{\sin r}$$
 = refractive index

Table 12.4 shows the refractive index of some media.

Table 12.4 Refractive index of some media

Medium	Refractive index
Water	1.33
Paraffin	1.44
Perspex	1.49
Glass	1.52
Diamond	2.42

Refractive index can also be calculated by dividing the speed of light in a vacuum or in air by the speed of light in a medium.

Worked examples

- 1. Calculate the refractive index if:
 - **a.** the sin $i = 65^{\circ}$ and sin $r = 40^{\circ}$
 - **b.** the speed of light in air is 3.0×10^8 m/s and its speed when it enters the water is 2.25×10^8 m/s.

Solution

a. Refractive index =
$$\frac{\sin i}{i}$$

Refractive index =
$$\frac{\sin 65^{0}}{\sin 40^{0}}$$

$$\frac{910}{2}$$

Refractive index =
$$\frac{0.906}{0.643}$$

Refractive index
$$=1.4$$

b. Refractive index =
$$\frac{\text{speed of light in air}}{\text{speed of light in air}}$$

Refractive index =
$$\frac{3.0 \times 10^8}{2.25 \times 10^8}$$

Refractive index =
$$1.33$$

2. The ray of light from air forms an angle of incidence of 80° at the surface of the glass. If the refractive index of glass is 1.5, calculate the angle of refraction.

Solution

Refractive index =
$$\frac{\sin i}{\sin r}$$

$$1.5 = \frac{\sin 80^0}{\sin r}$$

$$Sin r = \frac{\sin 80^0}{1.5}$$

Sin
$$r = 0.6565$$

Angle of refraction,
$$r = \sin^{-1} 0.6565$$

Angle of refraction,
$$r = 41.0^{\circ}$$

c. Diffraction

Diffraction is the spreading out of waves when passing through a slit or a gap of an obstacle.

Diffraction in a narrow gap

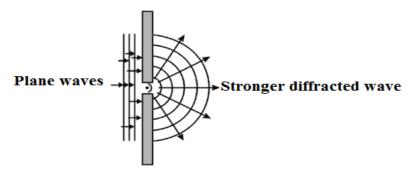


Figure 12.25 diffraction of a wave in a narrow gap

When waves pass through a narrow gap, there is more or stronger diffraction (spreading out) because the waves pass with greater pressure.

Diffraction in a wide gap

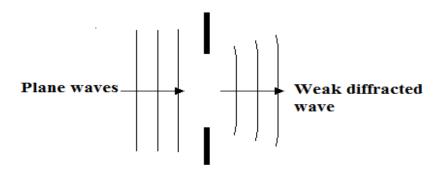


Figure 12.26 diffraction of a wave in a wide gap

When waves pass through a wide gap, there is less or weak diffraction (spreading out) because the waves pass with less pressure.

Diffraction in two slits or gaps

Figure 12.27 shows the water and light waves approaching two slits, S1 and S2 in an obstacle.

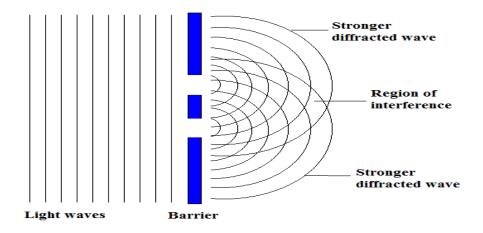


Figure 12.27 Diffraction of a wave in two slits

When a wave is diffracted in two slits, diffracted waves overlap and cause interference.

d. Interference

Interference is caused if two identical sets of waves travelling through the same region of water result in either reinforcing or cancelling each other.

Types of interference

i. Constructive Interference

Constructive interference is caused if two identical waves are in phase, both are moving in the same direction. The crest of one wave meets with the crest of another wave while the trough of one wave meets with a trough of another wave. These waves are always in phase, meaning they have a phase difference of 0^0 . During constructive interference, the amplitude of the resultant wave is doubled.

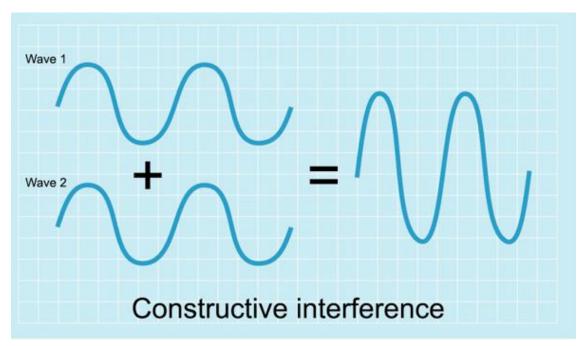


Figure 12.28 constructive interference

ii. Destructive interference

Destructive interference is caused when two identical waves move in opposite directions. When the waves meet, the crest of one wave coincides with the trough of the other wave, while the trough of the other wave coincides with the crest of the other wave. The waves are out of phase by 180° .

This results in no wave or no movement. Hence the property is also called Cancellation.

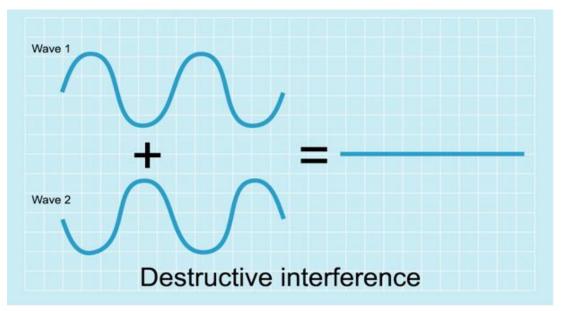


Figure 12.29 destructive interference

Exercise 12.4

In your groups, answer the following questions:

- 1. a. Define reflection.
 - **b.** State two laws of reflection.
- **2.** Explain why the water wave changes direction when it moves from a deep region to a shallow region.
- **3.** With the aid of a well labeled diagram, show the path of a light wave from air, within and beyond the glass.
- **4.** Refractive index of water is 1.4. Light wave enters water at an angle of incidence of 25°. Calculate the angle of refraction.
- **5.** Explain the difference between waves passing through narrow and wide gaps.
- 6. Describe:
- a. constructive interference.
- **b.** destructive interference.

The speed or velocity, frequency and wavelength are linked by an equation called **wave equation.**

If the speed of a wave is V in m/s, the frequency is f in Hz and the wavelength is λ in m.

The wave equation becomes:

$$V = f x \lambda$$

To derive the wave equation:

Velocity of a complete cycle = $\underline{\text{distance covered by a complete cycle}}$ Time taken by a complete cycle to be performed

Distance covered by a complete cycle(d) = wavelength (λ) Time taken for a complete cycle to be performed = Period (T)

Velocity of a complete cycle: $V = \frac{\lambda}{T}$

Which can also be written as: $V = \underline{1} \times \lambda$

$$\begin{array}{cc} But & \quad \underline{1} = f \\ & T \end{array}$$

Therefore, the wave equation becomes: $V = f x \lambda$

Worked examples

1. The wave crests in a ripple tank are 3 mm apart. Calculate the speed of the wave if the frequency of the vibrator is 15 Hz.

Solution

$$\lambda = 3 \text{ mm} = 0.003 \text{ m}$$
 f = 15 Hz
V = f x λ
V = 15 Hz x 0.003 m
V = **0.045 m/s**

2. Calculate the frequency of a wave of wavelength 100 m and its velocity is $3 \times 10^8 \text{ m/s}$.

Solution

$$V = f x \lambda$$
$$f = \underline{V}$$
$$\lambda$$

$$f = \frac{3 \times 10^8 \text{ m/s}}{100}$$

 $f = 3 \times 10^6 Hz$

3. Nyasa broadcasting station broadcasts a radio wave of speed 3 x 10^8 m/s on a frequency of 750 kHz. Find the wavelength of this wave

Solution

$$V = 3 \times 10^8 \text{m/s}$$

$$f = 750 \text{ kHz} = 7.5 \times 10^5 \text{ Hz}$$

$$\lambda = ?$$

$$V = f \lambda$$

$$\lambda = \frac{V}{f}$$

$$\lambda = \frac{3 \times 10^8 \,\text{m/s}}{7.5 \times 10^5 \,\text{Hz}}$$

 $\lambda = 400 \text{ m}$

Exercise 12.5

In your groups, answer the following questions:

- **1.** A turning fork produces 200 cycles in 4 seconds. Find the wavelength of this sound wave if the speed of sound in air is 330 m/s.
- **2.** A radio wave is transmitted at a frequency of 10 kHz. If the speed of a radio wave is 3 x 10^8 m/s, calculate
 - a. its wavelength
 - **b.** the time taken for the wave to travel a distance of 5 km.

Summary

Oscillations or vibrations are complete upward or downward movements of an object about its fixed position (rest position or equilibrium position). Oscillations or vibrations can also be defined as complete to and fro movements of an object about its fixed position (rest position or equilibrium position).

Characteristics of oscillating systems are:

Amplitude: the maximum displacement of an oscillating system from its resting position.

Displacement is the direction and distance from mean position. Displacement is measured in metres (m) or centimeters (cm).

Period: the time taken for one complete oscillation or cycle to be performed.

Frequency: the number of complete oscillations or cycles produced in a unit time.

Factors that affect frequency of an oscillating system are

- Pendulum: length of the string.
- Loaded spring: mass of the bob.
- Cantilever: mass at its end.

A wave is a means of disturbance or oscillation that travels through a medium or vacuum, accompanied by a transfer of energy.

A wave motion is the transmission of energy from one place to another through a material or vacuum.

Characteristics of a wave are amplitude, frequency, velocity, period, phase and wavelength. The two types of waves are transverse and longitudinal waves.

The properties of waves are reflection, refraction, diffraction and interference.

The equation which relates speed (velocity) of a wave, its frequency and wave length is called wave equation.

$$V = f x \lambda$$

Student assessment

- **1.** Define the following:
 - **a.** Amplitude
 - **b.** Frequency
 - c. Refraction
 - **d.** Wave front

2. Figure 12.30 is a diagram showing a wave motion

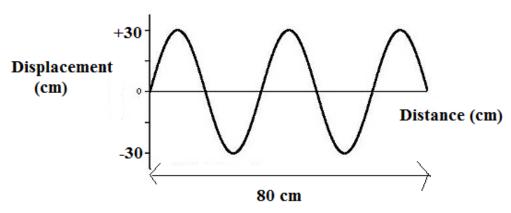


Figure 12.30

- **a.** What type of wave is represented in the diagram?
- **b.** What is the amplitude of the wave?
- **c.** What is the wavelength of the wave?
- **d.** If the period of the wave is 10 seconds, calculate its frequency.
- e. Calculate the velocity of the wave.
- **3.** Draw a diagram of a transverse wave. In the diagram, indicate amplitude, wavelength and direction of the wave motion.
- **4. Figure 12.31** shows a wave form of a pendulum.

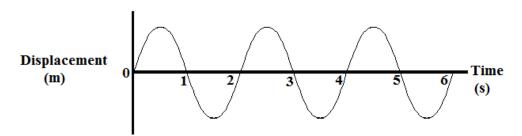


Figure 12.31

- **a.** What is the type of the wave shown in the **Figure 12.31**?
- **b.** Work out the frequency of the wave.
- **c.** Calculate the period of the wave.
- **d.** State the energy changes that take place in a pendulum.
- **e.** What causes the amplitude of oscillation of a pendulum decrease as time increases?
- **5.** A tuning fork produces 500 cycles in 5 seconds. Find the wavelength of this sound wave if the speed of sound in air is 340 m/s.

- **6.** The frequency of a microwave is 100 kHz; calculate its wavelength given the speed of electromagnetic waves in a vacuum or air = 3×10^8 m/s.
- 7. State **two** properties of the water waves.
- **8.** What can be said about the phase difference of two identical sets of waves if they cause:
- a. Constructive interference
- **b.** Destructive interference.
- **9.** With the aid of well labeled diagrams, explain the formation of constructive interference and destructive interference.
- **10.** With the aid of well labeled diagrams, explain the difference between longitudinal and transverse waves.
- 11. Figure 12.32 shows a ray of light incident on air-glass boundary.

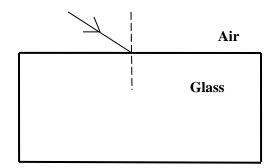


Figure 12.32

Complete the path of the ray of light to show

- a. reflection
- **b.** refraction
- **12.** Given the spring, bobs (50 g, 100 g, 150 g and 200 g), clamp, stopwatch and ruler, describe an experiment that you would carry out to find out whether the frequency of a vibrating spring depends on the mass of the bob.
- 13. Explain why the amplitude of a vibrating cantilever decreases with increase in time.

- 14. a. Define
- i. transverse wave
- ii. longitudinal wave
- **b.** Give an example of:
- i. a longitudinal wave.
- ii. a transverse wave.
- **15.** A transverse wave travels a distance of 50 cm in 5 seconds and its wavelength is 2 m. Calculate:
 - a. its velocity.
 - **b.** the frequency of the wave.
- **16. a.** Define oscillations in a pendulum.
 - **b.** In a swinging pendulum, explain what happens to the following as the time increases:
 - i. Amplitude
 - ii. Frequency.
- **17.** A form three student wanted to find out if the frequency of a vibrating cantilever is affected by mass. Describe an experiment that she would carry out.
- **18.** State two factors that affect the frequency of a pendulum.
- **19.** Describe an experiment that you would carry out to show that the frequency of a vibrating pendulum depends on the length of a string.

CHAPTER 13

Sound

Objectives

At the end of chapter 13, you must be able to:

- Describe experimentations to show that sound is produced by vibrating bodies
- Discuss free vibrations, forced vibrations, natural frequency and resonance
- Explain the nature of sound waves
- Explain the factors affecting the speed of sound

13.1 Production of sound

Sound is a wave which belongs to a type of a wave called longitudinal wave. The direction of the particles is the same as the direction of the wave itself.

Production of sound

Sound waves are produced by vibrations of the vibrating systems. Examples of objects that can produce sound are loudspeaker, tuning fork, toothed wheel, siren etc.

Experiment 13.1

AIM: To show that sound is produced by vibrating objects.

MATERIALS: Person, elastic band and tuning fork.

PROCEDURE:

- 1. Put a finger on the throat of a person who is speaking. What do you observe?
- 2. Stretch an elastic band and pluck it. What do you observe?
- **3.** Tap a tuning fork. What do you observe?

RESULTS/EXPLANATIONS

- 1. When you put a finger on the throat of someone who is speaking, the person starts humming. The humming can give a clue to how sound is produced.
- **2.** If an elastic band is stretched and plucked, it will be seen vibrating and it will produce a humming sound. In this case, the elastic band represents the tissue called the vocal chords found in the throat which vibrate to produce sound.
- 3. When a tuning fork is tapped gently it will vibrate. Sound is produced as it vibrates.

CONCLUSION

From the above observations, it shows that sound is produced by vibrations caused by vibrating objects.

Amplitude and loudness of sound

When a loudspeaker cone vibrates, it moves forwards and backwards. The maximum distance the loudspeaker cone moves forwards and backwards is called **amplitude**. The **amplitude** of a sound wave is the maximum distance the vibrating system moves backwards and forwards from its rest position.

The amplitude of a sound wave produced increases with an increase in the amplitude of a loudspeaker cone. An increase in amplitude causes more sound energy to travel out through the air every second to the ear. Hence the sound becomes louder.

Therefore, the loudness of sound depends upon the amplitude of the wave that produces it.

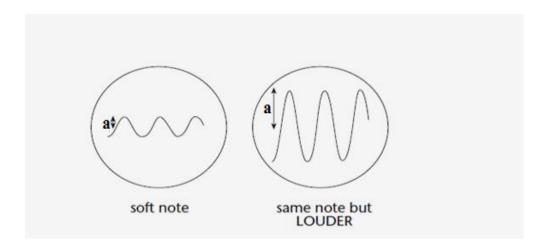


Figure 13.1 effect of amplitude of the wave on loudness of sound

Frequency and pitch of sound

Sound waves are created by vibrations or oscillations. The number of oscillations per second is called **frequency**. Frequency of a sound wave can also be considered as the number of wavelengths the wave can produce per second.

Sound waves of different frequencies sound different to the ear. Sound wave of high frequency is heard as a note said to be of high **pitch**. Sound wave of low frequency is heard as a note said to be of low **pitch**.

Sound of high frequency has a note of **high pitch** and a short wavelength. Sound of low frequency has a note of **low pitch** and long wavelength.

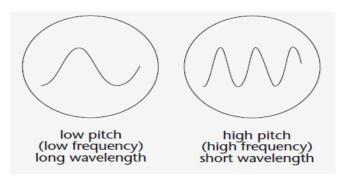


Figure 13.2 effect of frequency on the pitch of sound

Audible sound

Audible sound range is the sound of the frequency which can be detected by human ear. The frequency of audible sound ranges from 20 Hz to 20 kHz (20 000 Hz).

Ultrasonic sound

Ultrasonic sound range is the sound of frequency that cannot be detected by human ear but other animals e.g. dogs, bats and fish.

This is a sound with very high frequency of greater than 20 kHz (20 000Hz).

Table 13.1 frequency of vibrations and pitch notes

Pitch		Frequency (Hz)
High	Upper limit of hearing	20 000
	Whistle	10 000
	High note (soprano)	1000
	Low note (bass)	100
Low	Drum note	20

Exercise 13.1

In your groups, answer the following questions:

1. Table 13.2 shows the frequencies of sound waves produced by five loud speakers.

Table 13.2

Loud speaker	Frequency (Hz)
1	300
2	200
3	400
4	100
5	250

Which sound has:

a. the highest frequency? **b.** the lowest frequency?

c. the highest pitch? **d.** lowest pitch?

e. the longest wavelength? **f.** the shortest wavelength?

2. Explain why high amplitude produces a louder sound.

3. Figure 13.3 below shows sound waves produced by sirens A and B.

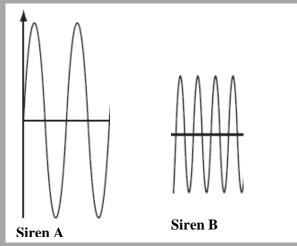


Figure 13.3

Which sound wave;

a. is louder? **b.** has a higher pitch?

13.2 Free and forced vibrations

Free vibrations

When the string in **Figure 13.4** is plucked, it vibrates freely. It continues vibrating when left alone. This vibration is called **free vibration**. The frequency with which it vibrates is called **natural frequency.**

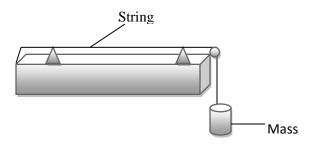


Figure 13.4 free vibrations

Examples of natural frequency are a child on a swing who has been pushed once only, a punch-ball which has received just one punch, a simple pendulum and a tuning fork which has been struck.

Forced vibration

When the string in **Figure 13.4** is plucked continually its frequency is determined by the person plucking it, when the child on the swing is pushed continually its frequency is determined by the person pushing the swing. Similarly, when a boxer punches the punch-ball continually, the frequency with which the punch-ball oscillates is determined by the frequency with which the boxer punches. These objects are not vibrating with their natural frequency but they are forced to vibrate. These vibrations are called **forced vibrations**. The frequency with which these objects vibrate is called **forced frequency**.

When an object is vibrated continually it reaches its extreme position. Therefore, forced vibrations become much larger in amplitude.

Resonance

If you strike a tuning fork once and leave it to vibrate, it produces natural frequency due to natural vibration. When the vibrating tuning fork is brought closer to the air column, air column is forced to vibrate at the same frequency as the tuning fork.

Therefore, the air column produces forced frequency.

When the natural frequency of the natural vibrating tuning fork equals the forced frequency of the forced vibrating air column, the resonant point is reached. This phenomenon is called **Resonance.**

Resonance takes place when a body is made to vibrate at its natural frequency by vibrations received from another vibrating source of the same frequency.

Resonance is a phenomenon (happening) that needs two vibrations:

- **a.** Forced vibration
- **b.** Natural vibration

Resonance takes place when natural frequency equals forced frequency.

"Forced vibration" frequency = "natural vibration" frequency

Demonstrating resonance by using Barton's pendulum

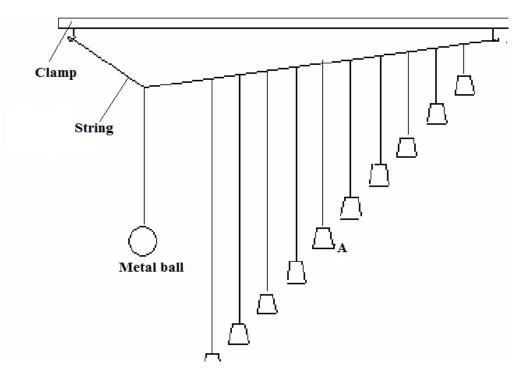


Figure 13.5 Barton's pendulum

Every object has its own natural frequency of vibration. The object will vibrate with that frequency when it has the opportunity.

Figure 13.5 shows a stretched string to which ten pendulums of different lengths are attached. When the metal ball is set swinging, it forces all the ten bobs swinging as followers. The bob with the same length of string as the metal ball will swing with a much larger amplitude. A's frequency equals the metal ball's frequency because they have the same length. Therefore, A **resonates** with the metal ball.

Experiment 13.1

AIM: To investigate resonance.

MATERIALS: Resonance tube, clamp stands, tuning forks (frequencies 400 Hz, 500 Hz and 600 Hz) and water.

PROCEDURE:

1. Set up an experiment as shown in **Figure 13.6.**

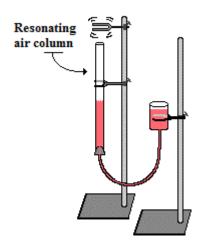


Figure 13.6

- 2. Vibrate a tuning fork of a frequency 400 Hz.
- **3.** Take the vibrating tuning fork and hold it over the mouth of the tube with water.

- **4.** Vary the depth of the water in the tube until the air column is made to resonate with the turning fork. Record the length of the air column (*l*) that was required to produce resonance.
- **5.** Repeat the experiment with other tuning forks of frequency 500 Hz and 600 Hz. Record the air column used to produce resonance in each case.
- 6. Record your results in Table 13.3.

Table 13.3

Frequency (f)	Length of air column (l)
400 Hz	
500 Hz	
600 Hz	

EXPLANATION/CONCLUSION

When the vibrating tuning fork is brought on the mouth of the tube with no air column you will not hear any sound. As the level of water is decreased and the air column is increased you will hear the sound increase. Increasing the length of air column further gives the maximum sound. The loud sound is heard when the air column reaches a certain critical length. This is called the **position of resonance**.

The same experiment can be carried out by using a glass tube placed in a jar with water. The length of the air column is varied by raising or lowering the tube.

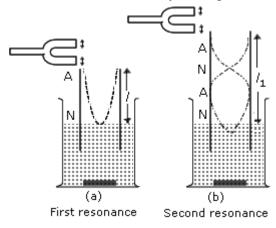


Figure 13.7 Resonance in a jar with water

Figure 13.8 shows the graph of how the amplitude of sound varies with frequency in order to reach the position of resonance.

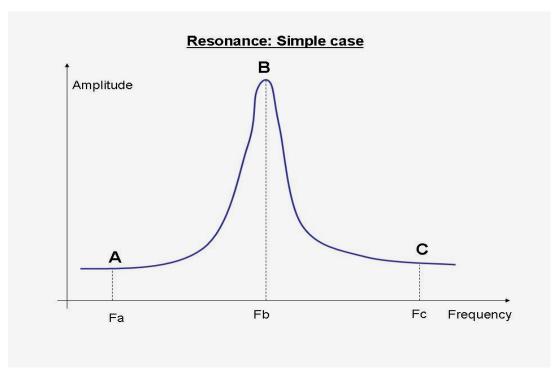


Figure 13.8 resonance graph

 $\mathbf{Fb} = \mathbf{Resonant}$ frequency

 \mathbf{B} = Resonant point because there is maximum amplitude of vibration

Uses of resonance

Resonance is used in the following;

- a. Child's swing
- **b.** Driving a car
- c. Swinging bridge
- **d.** A diver jumps up and down at the board's natural frequency when he wants to perform a very high dive. This resonance increases the amplitude of the springboard and the diver has no difficulty in reaching the required height.

Resonance can be a nuisance and dangerous. Resonance can cause breaking in swinging bridges when people are marching on it. When the natural frequency and forced frequency are equal the bridge vibrates violently.

Exercise 13.2

In your groups, answer the following questions:

- **1.** With the aid of a diagram, explain how you can demonstrate free and forced vibrations.
- **2.** What do you understand by the word 'resonance'?
- **3.** Describe with the aid of a diagram, an experiment you would carry out to obtain resonance between a tuning fork and a column of air in a bottle.
- **4.** State **two** situations where resonance is good.

13.3 Nature of sound waves

Propagation of sound

Sound waves are caused by vibrations.

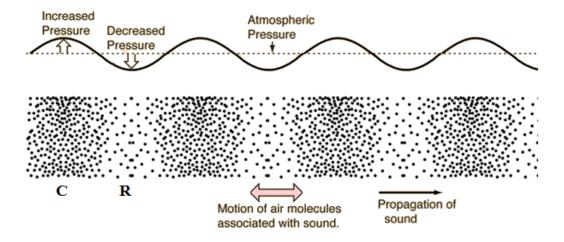
Propagation (spreading) of sound is the way by which sound travels from side to side or from where it is produced to where it is heard.

When the bell is struck, it vibrates. The vibrations compress then stretch the air particles, as shown in **Figure 13.9**. The compressed (squeezed) air particles form a region of high pressure called **compression**(**C**). The stretched (spaced) air particles form a region of low pressure called **rarefaction**(**R**). The compressions and rarefactions travel forward to the ear. Air transmits a longitudinal wave. The wave is known as **sound wave**.



Figure 13.9 transmission of sound in air

Figure 13.10 shows how air pressure varies along the path of a sound wave.



Transmission of sound in air and in a vacuum

Figure 13.9, shows that a sound wave is transmitted in air as a longitudinal wave. A sound wave needs a medium or material to travel through because it is a longitudinal wave and requires a material that can pass on oscillations. Sound cannot travel in a vacuum. Sound waves can travel through air, solids and liquids.

Experiment 13.2

AIM: To demonstrate that sound waves do not pass through a vacuum.

MATERIALS: Electric bell, power supply, switch, connecting wires, bell jar, cork and vacuum pump.

PROCEDURE:

- 1. Suspend an electric bell inside a bell jar.
- 2. Connect a vacuum pump to the bell jar as shown in **Figure 13.11**.

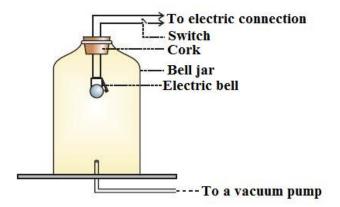


Figure 13.11

- **3.** Close the switch before starting the vacuum pump. Explain your observations.
- **4.** Start the vacuum pump. Explain your observations.

RESULTS/EXPLANATIONS

Before starting the vacuum pump: When the glass jar is well closed and the switch is closed, the hammer hits the gong. The sound of an electric bell is heard.

After starting the vacuum pump: When the vacuum pump is started, the sound of an electric bell becomes fainter until it cannot be heard. But the hammer can be seen striking the gong.

When the air is pumped in once more, the sound of an electric bell is heard once again.

CONCLUSION

Therefore, sound waves can only be heard if there is a material or medium present to pass oscillations, so it is not possible for sound to travel through a vacuum.

Speed of sound

Speed is the distance covered per unit time. The speed of sound is mainly measured by using the reflection of sound.

Reflection of sound

Reflection of sound takes place when it strikes an obstacle, e.g. a wall or a cliff.

The reflected or bounced off sound wave is called an **echo**.

An echo can be used to measure the speed of sound in air and measure the depth of a sea.

Measuring the speed of sound using an echo

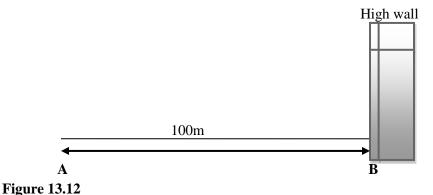
Experiment 13.3

AIM: To determine the speed of sound in air

MATERIALS: Stopwatch, toy gun, measuring tape and a high wall.

PROCEDURE:

- 1. Measure a distance of 100 m from the high wall by using a measuring tape.
- 2. Stand at a distance of 100 m (point A) from the high wall (point B).



3. Fire a toy gun at point A. Start the stopwatch as soon as you fire a toy gun. Stop the stop watch as soon as you hear an echo. Record the time taken from the time the gun was fired to the time an echo was heard.

RESULTS/EXPLANATIONS

The time taken from when the sound wave was produced to when an echo was heard is **t**. The time (t) is for the distance A to B then back to A.

The distance covered is 2d.

Therefore, the speed of sound using an echo can be estimated as follows:

Speed of sound =
$$\underline{2d}_{t}$$

$$S = \frac{2d}{t}$$

Note that the speed of sound without using an echo is:

$$\mathbf{S} = \mathbf{\underline{d}} \\ \mathbf{t}$$

Transmission of sound in different media

Sound is transmitted at different speeds in different media.

The speed of sound varies considerably depending on the material through which the waves are traveling.

The following are the speeds of sound in different media or materials:

Air = 330 m/s (dry air, at
$$0^{0}$$
C)
Water = 1400 m/s (at 0^{0} C)
Solid = 500 m/s

Worked examples

1. An observer sees a flash of a gun being fired and hears the sound 2.4 seconds later. If the distance from the gun to the observer is 816 m/s, calculate the speed of the sound in air.

Solution

In this situation, there is no echo being produced.

Therefore,
$$s = \underline{d}$$

t

$$d = 816 \text{ m}$$
 $t = 2.4 \text{ s}$

$$s = \underline{d}$$

$$t$$

$$s = \underline{816 \text{ m}}$$

$$2.4 \text{ s}$$

$$s = \mathbf{340 \text{ m/s}}$$

2. A girl standing in front of a hill produces a sound and hears an echo 4 seconds later. If the speed of sound in air is 330 m/s, how far is the hill from the girl?

Solution

$$s = 330 \text{ m/s}$$

$$t = 4 \text{ s}$$

$$d = ?$$

$$s = 2d \text{ (since there is an echo)}$$

$$t$$

$$d = s \times t$$

$$2$$

$$d = 330 \text{ m/s} \times 4s$$

$$2$$

$$d = 660 \text{ m}$$

- **3.** A boy standing between two cliffs is 850 m from the nearest cliff. When he fires a gun, the first echo is heard after 5 seconds, and the second echo is heard 8 seconds later. Calculate:
 - **a.** The speed of sound.
 - **b.** The distance between the cliffs.

Solution

a. To find the speed of sound in air

$$s = \frac{2d}{t}$$

$$d = 660 \text{ m}$$

$$t = 5 \text{ s}$$

$$s = ?$$

$$s = \frac{850 \text{ m x } 2}{5 \text{ s}}$$

s = 340 m/s

b. The distance between two cliffs = distance from the boy to the nearest cliff + distance from the boy to the furthest cliff

Distance from the boy to the nearest cliff = 850 m

Distance from the boy to the furthest cliff can be found as follows:

$$s=\underline{2d}$$

t

$$d = ?$$

$$s = 340 \text{ m/s}$$

$$t = 8 s$$

$$d = \underline{s \times t}$$

$$d = \underline{s \times t}$$

$$AC = \underline{340 \text{ m/s x 8 s}}$$

$$d = 1360 \text{ m}$$

Distance between two cliffs = 850 m + 1360 m

$$d = 2210 m$$

Wave equation

The speed of sound can also be found by using the wave equation:

$$V = f x \lambda$$

Whereby V is velocity (speed) in m/s, f is frequency in Hz and λ is wavelength in m.

Worked examples

1. Find the speed of the sound wave if its wavelength is 3.4 m and its frequency is 100 Hz.

Solution

$$\lambda = 3.4 \text{ m}$$
 f = 100 Hz

$$V = f x \lambda$$

$$V = 100 \text{ Hz x 3.4 m}$$

$$V = 340 \text{ m/s}$$

2. A tuning fork produces 250 cycles in 2.5 seconds. Find the wavelength of this sound if the speed of sound in the air is 340 m/s.

Solution

f =
$$\frac{250 \text{ cycles}}{2.5 \text{ s}}$$

f= 100 Hz
V= 340 m/s
 λ =?
V= f x λ
 λ = $\frac{V}{f}$
 λ = $\frac{340 \text{ m/s}}{100 \text{ Hz}}$
 λ = 3.4 m

Exercise 13.3

In your groups, answer the following questions:

- 1. Yankho sees steam start to come from a factory whistle and she hears the sound 5 seconds later. If the speed of sound in the air is 340 m/s, how far is she from the whistle?
- **2.** How long will a sound wave travel 1000 m if the speed of sound in the air is 330 m/s?
- **3.** The loudspeaker placed 80 m in front of a large vertical wall produces sound waves. If the speed of sound in the air is 340 m/s, calculate the time taken for the sound wave to be reflected back to the loudspeaker.
- **4.** A man standing between two cliffs claps two blocks of wood. He hears two echoes, the first after 2 seconds and the next after 3 seconds. The speed of sound in air is 340 m/s. What is the distance between the cliffs?

13.4 Factors that affect the speed of sound

The following are the factors that affect the speed of sound in a media:

- **a. Direction of wind:** In air, a sound wave travels faster when it is traveling in the direction of the wind and vice versa.
- **b. Temperature:** In air, the speed of sound can increase as the temperature increases without altering the pressure. The speed of sound increases with an increase in temperature when pressure is constant because the air expands and becomes less dense. Therefore, the compressions and rarefactions can easily be transmitted. For example, the speed of sound in the air at 0°C is 330 m/s while its speed at 25°C is 340 m/s.

c. Strength of intermolecular forces in a medium

The sound is slowest in gases, more rapidly in liquids and fastest in solids because the forces become stronger. Stronger forces make particles to be tightly packed. The oscillations are passed on more rapidly in a medium with tightly packed particles.

Summary

Sound is produced by vibrating bodies e.g loudspeaker, tuning fork, toothed wheel, siren, bell, guitar, hacksaw blades, ruler, empty bottle whistle and drum.

Amplitude of the vibrating system affects the loudness of the sound produced. The higher the amplitude, the louder the sound and vice versa.

The frequency of a sound wave affects the pitch of sound. Sound of high frequency has a note of high pitch and vice versa.

Natural vibration is a vibration of any object when it is set to oscillate. A frequency at which any object vibrates freely is called **natural frequency.**

Forced vibration is the vibration of an object when it is forced to vibrate at a frequency other than its natural frequency. A frequency at which an object is forced to vibrate is called **forced frequency.**

Resonance takes place when a body is made to vibrate at its natural frequency by vibrations received from another vibrating source of the same frequency.

Resonance takes place when natural frequency equals forced frequency.

A sound wave is transmitted in a medium by means of compressions and rarefactions. A Sound wave is a longitudinal wave. Sound requires a medium for propagation.

Speed of sound can be determined experimentally by using an echo.

The formula for the speed of sound is:

$Speed = \underline{distance\ covered}$

time taken

When there is an echo, speed is found as:

Speed = 2 x distance covered

time taken

The speed of sound is different in different media as shown below:

Air = 330 m/s

Liquid = 1400 m/s

Solid = 5000 m/s

Factors that affect the speed of sound in media are direction of the wind (in the air), temperature and strength of the bonds.

Student assessment

- **1.** Explain what is meant by
 - a. a compression
 - **b.** a rarefaction
 - **c.** a longitudinal wave
- 2. Figure 13.13 shows how the air pressure varies along the path of a sound wave.

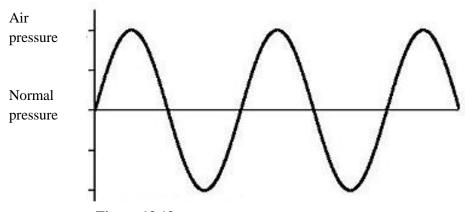
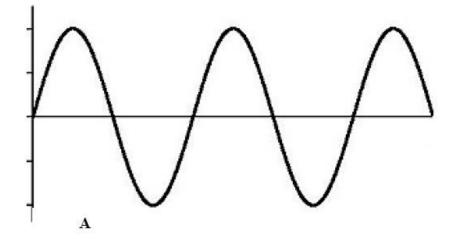


Figure 13.13

- a. On Figure 13.13, mark the points
 - i. that have high air pressure with letter H.
 - ii. that have low air pressure with letter L.
 - iii. that represent compressions with letter C.
 - iv. that represent rarefactions with letter R.
- **b.** Describe the motion of air particles along the path of a sound wave.
- **c.** Calculate the velocity of the wave if its wavelength is 2.2 m and it has a frequency of 150 Hz.
- **3. a.** Define an echo.
 - **b.** Explain how an echo can be used to find the depth of the sea.
- **4.** Calculate the wavelength of a sound wave that is produced by a source vibrating with a frequency of 50 Hz. The speed of sound in the air is 340 m/s.
- **5.** Explain the difference between audible sound and ultrasonic sound.
- **6.** Explain why sound does not travel through a vacuum.
- **7.** A boat hears the echo from a sound wave 5 seconds after it has been emitted. If the speed of sound in the water is 1400 m/s, calculate the depth of the sea.
- **8.** Describe an experiment that you would carry out to show that sound wave requires a medium for propagation.
- **9. Figure 13.14** shows sound waves shown on the oscilloscope.



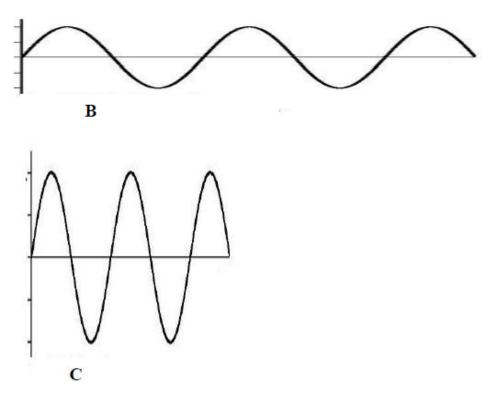


Figure 13.14

Which sound

- **a.** is the loudest?
- **b.** has the highest frequency?
- **c.** has the highest amplitude?
- **d.** has the lowest pitch?
- **e.** will sound the lowest?
- **10.** A girl standing 400 m away from the cliff shouts. If the speed of sound in air is 340 m/s, what is the time taken for the girl to hear the echo?
- 11. In a thunderstorm, both light and sound waves are produced at the same time.
 - **a.** Explain why you see light first before you hear the thunder.
 - **b.** What is the speed of:
 - i. Light?
 - ii. Sound in the air?
- 12. Describe an experiment that you would carry out to find the speed of sound in the air.

- 13. Explain the difference between
- **a.** natural and forced vibrations.
- **b.** free and forced frequency.
- **14. a.** Define resonance.
 - **b.** Explain the conditions for resonance to take place.
- **15.** Describe an experiment that you would carry out to investigate resonance.
- **16.** State **two** examples where resonance is:
- a. Useful.
- **b.** dangerous.

Glossary

Absolute temperature: the minimum temperature that any substance can reach when it is cooled.

Acceleration: the rate of change of velocity per unit time.

Amplitude: the maximum displacement of an oscillating system from its resting

position.

Apparent weight: the weight of an object which is lower than the real weight of an object.

Audible sound range: the sound of the frequency which can be detected by human ear.

Circuit breaker: an automatic switch which, if the current rises over a specified value, the

electromagnet pulls the contacts apart, thereby breaking the circuit.

Component of a vector: projection of the vector on an axis.

Compressions: regions of high pressure and density along a longitudinal wave where

particles are squeezed.

Condensation: the process whereby a gas changes to liquid.

Constructive interference: a disturbance caused if two identical waves are in phase, both are moving

in the right direction

Coulomb: the electric charge which passes any point in a circuit in 1 second when a

steady current of 1 ampere is flowing.

Crests or **peaks:** points where a wave causes maximum positive displacement of the

medium.

Current electricity: the flow of electric charge.

Dependent variable: this is the variable which you measure in an investigation.

Destructive interference: a disturbance caused when two identical waves move in opposite

directions

Diffraction: the spreading out of waves when passing through a slit or a gap of an

obstacle

Diffusion the movement of molecules (fluid molecules) from a region of high

concentration to a region of low concentration.

directions.

Displacement: how far and out of place an object is.

Displacement: the direction and distance from mean position. Displacement is measured

in metres (m) or centimeters (cm).

Distance: how much ground an object has covered during the motion.

Echo: the reflected or bounced off sound wave.

Effort: the force applied to a machine to move a load.

Electric circuit: a conducting path in which electrons flow or electric current takes place. **Electric current:** the flow of electric charges (electrons) from the negative side of an

electric field to the positive side.

Electric shock: the passing of electric current through the body.

Electrical resistance: the opposition to the flow of electrons in a wire or a circuit. **Electromagnetic waves:** the waves that do not need a medium for propagation.

Electromotive force (EMF): the maximum potential difference across a cell or battery when it not in a

circuit and not supplying current (when 1=0 A).

Eureka can: the displacement can in Archimedes' principle experiment.

Free fall: the falling of an object with uniform acceleration under the force of

gravity if air resistance is negligible.

Freezing: the process whereby a liquid is changed to a solid.

Frequency: the number of complete oscillations or cycles produced in a unit time. **Fuse rating:** the maximum amount of current that a fuse can allow to pass through

before it melts.

Fuse: a component which is used to control the amount of current flowing in

the circuit.

Heat: the measure of the total internal energy contained in a body.

Inclined plane: a plane surface at an angle to the horizontal.

Independent variable: the variable that you are changing in an investigation or experiment.

Interference: a disturbance caused if two identical sets of waves travelling through the same region of water resulting in either reinforcement or cancelling each

other.

Internal resistance (r): the resistance of a cell or battery to a current it causes.

is not in a circuit and not supplying current (when I = 0 A).

Kilowatt-hour: the electrical energy supplied in 1 hour to an appliance whose power is

1kw.

Kinetic energy: form of energy that a body possesses because of its motion.

Kinetic theory: a scientific explanation of the behaviour of the three states of matter. **Latent heat:** the heat taken in or given out whenever a substance changes its states. **Lever:** any rigid body which is pivoted about a point called the fulcrum.

Longitudinal wave: a wave in which the direction of the vibrating particles (oscillations) is

the same as the direction of a wave itself OR it is a wave in which the

displacements are parallel to the direction of a wave itself.

Machine: any device in which a force applied at one point can be used to overcome

a force at some other point.

matter.

Matter: anything which has mass and volume or occupies space.

Mechanical advantage: the ratio of the two forces, the load and the effort.

Mechanical waves: the waves that require a medium for propagation. They cannot pass

through a vacuum.

Melting: the process whereby a solid changes to a liquid.

Ohm: the electrical resistance of a conductor in which the current is 1 A when a

p.d. of 1 V is applied across it.

Oscillations or vibrations: complete upward or downward movements of an object about its fixed

position (rest position or equilibrium position) **or** complete to and fro movements of an object about its fixed position (rest position or

equilibrium position).

Parallax error: the apparent change in the position of an object due to the apparent

change in the position of your eyes.

Parallel circuit: a circuit in which components are connected in branches.

Period: the time taken for one complete oscillation or cycle to be performed.

Potential difference: the difference in potential between two points, equal to the energy

change when a unit electric charge moves from one place to another in an

electric field.

Power: the rate of doing work, or it is the electrical energy transferred per unit

time, or it is the rate at which energy is produced.

Pressure: the force exerted per unit area.

Pulley: a grooved rim (rims) mounted in a framework called a block.

Rarefactions: regions of low pressure and density along a longitudinal wave where

particles are spaced.

Reflection: the bouncing off of the waves when an obstacle is placed in their path.

Refraction: the bending of a wave when it changes its speed or velocity.

Refractive index: the ability of a transparent material to bend waves.

Resistor: a device that causes resistance.

Resonance: a phenomenon takes place when a body is made to vibrate at its natural

frequency by vibrations received from another vibrating source of the

same frequency.

Resultant Vector: the final vector which is found when adding or subtracting vectors.

Scalar quantities: quantities that only give the magnitude (size or numerical value).

Series circuit: a circuit in which all the components are connected in one line.

Short circuit: the accidental touching of a live wire and a neutral wire.

Speed: the distance covered per unit time.

Standard notation/ scientific notation/ standard form: numbers written using powers of 10.

Temperature: The measure of the level of heat energy (measure of how hot or cold a

body is).

Tolerance: the extent to which the actual value of the resistance can vary.

Transverse wave: a wave in which direction of vibrations or oscillations is perpendicular

(at right angle) to the direction of propagation of the wave.

Troughs: points where a wave causes maximum negative displacement of the

medium.

Ultrasonic sound range: the sound of frequency that cannot be detected by human ear but other

animals e.g. dogs, bats and fish.

Upthrust: upward force which is exerted by a fluid on an object.
 Variables: factors that would affect the results of the investigation.
 Vector quantities: quantities that have both magnitude and direction.

Velocity ratio: the ratio of the distance moved by the effort to the distance moved by the

load in the same time.

Velocity: the distance covered in a stated direction (displacement) in a unit time. **Wave front:** a line or section taken through an advancing wave which joins all points

which are in the same position in their oscillations.

Wave motion: the transmission of energy from one place to another through a material

or vacuum.

Wave phase: the orientation of wave pulses in space with respect to the origin of the

wave.

Wave: disturbance or oscillation that travels through a medium or vacuum,

accompanied by a transfer of energy.

Work done: force x distance moved by force in the direction of the force.

Work input: work put into the machine by the effort.

Work output: work done by the machine on the load.

Zero error: the error which occurs when the measuring instrument does not indicate

zero when it should.

REFERENCES

Abbott A.F. (1997). *Ordinary level physics (Third edition)*. Heinemann Educational Books, London.

Arnold Brian, Woolley Steve, Johnson Penny (2009). *Edexel IGCSE Physics*. Pearson Education Limited.

Duncan Tom (1970). Exploring physics. John Murray.

Duncan Tom (1983). Physics for Today and Tomorrow. John Murray.

Duncan Tom (1995). GCSE Physics. John Murray.

English Nigel (2011). AQA GCSE Physics. Longman (Pearson Education Limited).

Gibbs Keith (1990), Advanced physics (2nd edition), Cambridge university press.

Johnson Keith (2011). *New physics for you*. Updated Edition for All GCSE Examinations. Nelson Thornes.

Ministry of Education, Science and Technology (2013). *Teaching syllabus for physics (Forms 3 and 4)*. DOMASI: MIE.

Muncaster Roger (1993), A-level physics (4th edition), Stanley Thornes (publishers) Ltd.

Nkhata Zoto Grever (2014). Jhango Junior Physics Book 1. Jhango Publishers Ltd.

Nkhata Zoto Grever (2015). Jhango Junior Physics Book 2. Jhango Publishers Ltd.

Pople Stephen (2001). Complete Physics. Oxford University Press.

Rowell Gilbert and Herbert Sydney (1995). Physics. Cambridge University Press.

Wallis Keith, *MSCE physical science for Malawi* (2nd Edition) Book 2. ZOMBA. Chanco Publications.